Estimation of the through-plane thermal conductivity of polymeric ion-exchange membranes using finite element technique

被引:5
作者
Barragan, V. M. [1 ]
Izquierdo-Gil, M. A. [1 ]
Maroto, J. C. [2 ,3 ]
Antoranz, P. [1 ]
Munoz, S. [1 ]
机构
[1] Univ Complutense Madrid, Dept Struct Matter Thermal Phys & Elect, Madrid, Spain
[2] Univ Europea Madrid, Dept Sci Comp & Technol, Madrid, Spain
[3] Comillas Pontifical Univ, Dept Elect Automat & Commun, Madrid, Spain
关键词
Ion-exchange membranes; Thermal conductivity; Finite element method; CONTACT RESISTANCE; TEMPERATURE PROFILES; MODEL; SINGLE; LAYERS;
D O I
10.1016/j.ijheatmasstransfer.2021.121469
中图分类号
O414.1 [热力学];
学科分类号
摘要
The aim of this study is to calculate the through-plane thermal conductivity of commercial polymeric ion-exchange membranes. Different membranes were considered to study the influence of membrane properties on the thermal conductivity values. In particular we focused on reinforcement, ion exchange capacity and membrane density and thickness. For this purpose, we use a simple experimental setup and a numerical simulation to estimate the thermal conductivity from the experimental temperature profiles. Once the system is calibrated, the model includes as the only unknown parameter the membrane thermal conductivity. To validate the method, the thermal conductivity of the well-known Nafion membranes has been determined, a very good agreement was achieved in context from reliable literature values. The study also provides the thermal conductivity of other polymeric ion-exchange membranes with great potential in diverse applications under non-isothermal conditions. The calculated thermal conductivity for the different ion-exchange membranes is in the range from 0.04 Wm(-1) K-1 to 0.42 Wm(-1) K-1. The results show that the reinforcement leads to lower values of thermal conductivity whereas a higher density or heterogenous structure leads to higher thermal conductivity values. The approach presented here, combining experimental and simulation techniques, may provide a basis for confirming the effect of the polymeric ion-exchange membrane properties on the thermal conductivity and may shed light on the best choice for the electrolyte of membrane-based applications performance under non-isothermal conditions. Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 34 条
  • [1] An improved transient plane source method for measuring thermal conductivity of thin films: Deconvoluting thermal contact resistance
    Ahadi, Mohammad
    Andisheh-Tadbir, Mehdi
    Tam, Mickey
    Bahrami, Majid
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 96 : 371 - 380
  • [2] The through-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly and gas diffusion layer in proton exchange membrane fuel cells
    Alhazmi, N.
    Ingham, D. B.
    Ismail, M. S.
    Hughes, K.
    Ma, L.
    Pourkashanian, M.
    [J]. JOURNAL OF POWER SOURCES, 2014, 270 : 59 - 67
  • [4] A technique for uncertainty analysis for inverse heat conduction problems
    Blackwell, Ben
    Beck, James V.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (04) : 753 - 759
  • [5] Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling
    Bock, Robert
    Karoliussen, Havard
    Seland, Frode
    Pollet, Bruno G.
    Thomassen, Magnus Skinlo
    Holdcroft, Steven
    Burheim, Odne S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (02) : 1236 - 1254
  • [6] Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell
    Burheim, O.
    Vie, P. J. S.
    Pharoah, J. G.
    Kjelstrup, S.
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (01) : 249 - 256
  • [7] Study of thermal conductivity of PEM fuel cell catalyst layers
    Burheim, Odne S.
    Su, Huaneng
    Hauge, Hans Henrik
    Pasupathi, Sivakumar
    Pollet, Bruno G.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9397 - 9408
  • [8] Thermal conductivity and temperature profiles of the micro porous layers used for the polymer electrolyte membrane fuel cell
    Burheim, Odne S.
    Su, Huaneng
    Pasupathi, Sivakumar
    Pharoah, Jon G.
    Pollet, Bruno G.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (20) : 8437 - 8447
  • [9] Chapman A.J., 1960, HEAT TRANSF, V2nd
  • [10] Choy CL, 1999, J POLYM SCI POL PHYS, V37, P3359, DOI 10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO