Hybrid integrated PDMS microfluidics with a silica capillary

被引:10
作者
Dimov, Ivan K. [1 ,3 ]
Riaz, Asif [1 ]
Ducree, Jens [1 ]
Lee, Luke P. [1 ,2 ]
机构
[1] Dublin City Univ, Natl Ctr Sensor Res, Biomed Diagnost Inst, Dublin 9, Ireland
[2] Univ Calif Berkeley, Dept Bioengn, Biomol Nanotechnol Ctr, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
[3] Univ Valparaiso, Dept Biomed Engn, Valparaiso, Chile
基金
爱尔兰科学基金会;
关键词
ELECTROOSMOTIC FLOW; ELECTROPHORESIS; MICROCHIP; DEVICES; PROTEIN; VOLUME;
D O I
10.1039/b925132d
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To harness the properties of both PDMS and silica, we have demonstrated hybrid integrated PDMS microfluidic systems with fused silica capillaries. The hybrid integrated PDMS microfluidics and silica capillary (iPSC) modules exhibit a novel architecture and method for leakage free CE sample injection merely requiring a single high voltage source and one pair of electrodes. The use of the iPSC device is based on a modular approach which allows the capillary to be reused extensively whilst replacing the attached fluidic module for different experiments. Integrating fused silica capillaries with PDMS microfluidic modules allows the direct application of a wide variety of well established conventional CE protocols for separations of complex analytes. Furthermore it bears the potential for facile coupling to standard electro-spray ionization mass spectrometry (ESI-MS), letting users focus on the sample analysis rather than the development of new separation protocols. The fabrication of the iPSC module consists of a simple and quick three-step method that submerges a fused silica capillary in PDMS prepolymer. After cross linking the prepolymer and punching the inlets, the iPSC module layer can be mounted onto a microfluidic device for CE separation.
引用
收藏
页码:1468 / 1471
页数:4
相关论文
共 23 条
[11]   Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays [J].
Hung, PJ ;
Lee, PJ ;
Sabounchi, P ;
Lin, R ;
Lee, LP .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 89 (01) :1-8
[12]  
Landers J.P., 1997, HDB CAPILLARY ELECTR, Vsecond
[13]   Plasma modification of PDMS microfluidic devices for control of electroosmotic flow [J].
Martin, Ina T. ;
Dressen, Brian ;
Boggs, Mark ;
Liu, Yan ;
Henry, Charles S. ;
Fisher, Ellen R. .
PLASMA PROCESSES AND POLYMERS, 2007, 4 (04) :414-424
[14]   Transient isotachophoresis of highly saline trace metals under strong electroosmotic flow conditions [J].
Riaz, A ;
Chung, DS .
ELECTROPHORESIS, 2005, 26 (03) :668-673
[15]  
RIAZ A, 2008, 12 INT C MIN SYST CH, P1193
[16]   Integrated microfluidic electrophoresis system for analysis of genetic materials using signal amplification methods [J].
Tang, T ;
Badal, MY ;
Ocvirk, G ;
Lee, WE ;
Bader, DE ;
Bekkaoui, F ;
Harrison, DJ .
ANALYTICAL CHEMISTRY, 2002, 74 (04) :725-733
[17]   Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips [J].
Tsai, CH ;
Yang, RJ ;
Tai, CH ;
Fu, LM .
ELECTROPHORESIS, 2005, 26 (03) :674-686
[18]   Detection of green fluorescent protein in a single bacterium by capillary electrophoresis with laser-induced fluorescence [J].
Turner, Emily H. ;
Lauterbach, Kevin ;
Pugsley, Haley R. ;
Palmer, Vanessa R. ;
Dovichi, Norman J. .
ANALYTICAL CHEMISTRY, 2007, 79 (02) :778-781
[19]  
Xia YN, 1998, ANGEW CHEM INT EDIT, V37, P550, DOI 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO
[20]  
2-G