Best practices on the differential expression analysis of multi-species RNA-seq

被引:59
作者
Chung, Matthew [1 ,2 ]
Bruno, Vincent M. [1 ,2 ]
Rasko, David A. [1 ,2 ]
Cuomo, Christina A. [3 ]
Munoz, Jose F. [3 ]
Livny, Jonathan [3 ]
Shetty, Amol C. [1 ]
Mahurkar, Anup [1 ]
Dunning Hotopp, Julie C. [1 ,2 ,4 ]
机构
[1] Univ Maryland Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA
[2] Univ Maryland Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA
[3] Broad Inst, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
RNA-Seq; Transcriptomics; Best practices; Differential gene expression; SINGLE-CELL; MESSENGER-RNA; GENE-EXPRESSION; HOST; PATHOGEN; TRANSCRIPTOME; GENOME; BACTERIAL; QUANTIFICATION; EFFICIENT;
D O I
10.1186/s13059-021-02337-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
引用
收藏
页数:23
相关论文
共 151 条
  • [101] Differential analysis of RNA-seq incorporating quantification uncertainty
    Pimentel, Harold
    Bray, Nicolas L.
    Puente, Suzette
    Melsted, Pall
    Pachter, Lior
    [J]. NATURE METHODS, 2017, 14 (07) : 687 - +
  • [102] Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions
    Pisu, Davide
    Huang, Lu
    Grenier, Jennifer K.
    Russell, David G.
    [J]. CELL REPORTS, 2020, 30 (02): : 335 - +
  • [103] Evaluating the genome and resistome of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing
    Pitt, Miranda E.
    Nguyen, Son H.
    Duarte, Tania P. S.
    Teng, Haotian
    Blaskovich, Mark A. T.
    Cooper, Matthew A.
    Coin, Lachlan J. M.
    [J]. GIGASCIENCE, 2020, 9 (02):
  • [104] Long reads: their purpose and place
    Pollard, Martin O.
    Gurdasani, Deepti
    Mentzer, Alexander J.
    Porter, Tarryn
    Sandhu, Manjinder S.
    [J]. HUMAN MOLECULAR GENETICS, 2018, 27 (R2) : R234 - R241
  • [105] Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing
    Rienksma, Rienk A.
    Suarez-Diez, Maria
    Mollenkopf, Hans-Joachim
    Dolganov, Gregory M.
    Dorhoi, Anca
    Schoolnik, Gary K.
    dos Santos, Vitor A. P. Martins
    Kaufmann, Stefan H. E.
    Schaap, Peter J.
    Gengenbacher, Martin
    [J]. BMC GENOMICS, 2015, 16
  • [106] Normalization of RNA-seq data using factor analysis of control genes or samples
    Risso, Davide
    Ngai, John
    Speed, Terence P.
    Dudoit, Sandrine
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (09) : 896 - 902
  • [107] limma powers differential expression analyses for RNA-sequencing and microarray studies
    Ritchie, Matthew E.
    Phipson, Belinda
    Wu, Di
    Hu, Yifang
    Law, Charity W.
    Shi, Wei
    Smyth, Gordon K.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (07) : e47
  • [108] Roberts A, 2013, NAT METHODS, V10, P71, DOI [10.1038/NMETH.2251, 10.1038/nmeth.2251]
  • [109] De novo assembly and analysis of RNA-seq data
    Robertson, Gordon
    Schein, Jacqueline
    Chiu, Readman
    Corbett, Richard
    Field, Matthew
    Jackman, Shaun D.
    Mungall, Karen
    Lee, Sam
    Okada, Hisanaga Mark
    Qian, Jenny Q.
    Griffith, Malachi
    Raymond, Anthony
    Thiessen, Nina
    Cezard, Timothee
    Butterfield, Yaron S.
    Newsome, Richard
    Chan, Simon K.
    She, Rong
    Varhol, Richard
    Kamoh, Baljit
    Prabhu, Anna-Liisa
    Tam, Angela
    Zhao, YongJun
    Moore, Richard A.
    Hirst, Martin
    Marra, Marco A.
    Jones, Steven J. M.
    Hoodless, Pamela A.
    Birol, Inanc
    [J]. NATURE METHODS, 2010, 7 (11) : 909 - U62
  • [110] Aligner optimization increases accuracy and decreases compute times in multi-species sequence data
    Robinson, Kelly M.
    Hawkins, Aziah S.
    Santana-Cruz, Ivette
    Adkins, Ricky S.
    Shetty, Amol C.
    Nagaraj, Sushma
    Sadzewicz, Lisa
    Tallon, Luke J.
    Rasko, David A.
    Fraser, Claire M.
    Mahurkar, Anup
    Silva, Joana C.
    Hotopp, Julie C. Dunning
    [J]. MICROBIAL GENOMICS, 2017, 3 (09):