Best practices on the differential expression analysis of multi-species RNA-seq

被引:59
作者
Chung, Matthew [1 ,2 ]
Bruno, Vincent M. [1 ,2 ]
Rasko, David A. [1 ,2 ]
Cuomo, Christina A. [3 ]
Munoz, Jose F. [3 ]
Livny, Jonathan [3 ]
Shetty, Amol C. [1 ]
Mahurkar, Anup [1 ]
Dunning Hotopp, Julie C. [1 ,2 ,4 ]
机构
[1] Univ Maryland Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA
[2] Univ Maryland Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA
[3] Broad Inst, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
RNA-Seq; Transcriptomics; Best practices; Differential gene expression; SINGLE-CELL; MESSENGER-RNA; GENE-EXPRESSION; HOST; PATHOGEN; TRANSCRIPTOME; GENOME; BACTERIAL; QUANTIFICATION; EFFICIENT;
D O I
10.1186/s13059-021-02337-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
引用
收藏
页数:23
相关论文
共 151 条
  • [91] metaSPAdes: a new versatile metagenomic assembler
    Nurk, Sergey
    Meleshko, Dmitry
    Korobeynikov, Anton
    Pevzner, Pavel A.
    [J]. GENOME RESEARCH, 2017, 27 (05) : 824 - 834
  • [92] Olsen Thale Kristin, 2018, Curr Protoc Mol Biol, V122, pe57, DOI 10.1002/cpmb.57
  • [93] NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data
    Patel, Ravi K.
    Jain, Mukesh
    [J]. PLOS ONE, 2012, 7 (02):
  • [94] Salmon provides fast and bias-aware quantification of transcript expression
    Patro, Rob
    Duggal, Geet
    Love, Michael I.
    Irizarry, Rafael A.
    Kingsford, Carl
    [J]. NATURE METHODS, 2017, 14 (04) : 417 - +
  • [95] Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
    Patro, Rob
    Mount, Stephen M.
    Kingsford, Carl
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (05) : 462 - U174
  • [96] How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets
    Peixoto, Lucia
    Risso, Davide
    Poplawski, Shane G.
    Wimmer, Mathieu E.
    Speed, Terence P.
    Wood, Marcelo A.
    Abel, Ted
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (16) : 7664 - 7674
  • [97] IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth
    Peng, Yu
    Leung, Henry C. M.
    Yiu, S. M.
    Chin, Francis Y. L.
    [J]. BIOINFORMATICS, 2012, 28 (11) : 1420 - 1428
  • [98] OperonDB: a comprehensive database of predicted operons in microbial genomes
    Pertea, Mihaela
    Ayanbule, Kunmi
    Smedinghoff, Megan
    Salzberg, Steven L.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D479 - D482
  • [99] Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation
    Peterson, Eliza J. R.
    Bailo, Ebeca
    Rothchild, Alissa C.
    Arrieta-Ortiz, Mario L.
    Kaur, Amardeep
    Pan, Min
    Mai, Dat
    Abidi, Abrar A.
    Cooper, Charlotte
    Aderem, Alan
    Bhatt, Apoorva
    Baliga, Nitin S.
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2019, 15 (03)
  • [100] Single-cell RNA-sequencing: The future of genome biology is now
    Picelli, Simone
    [J]. RNA BIOLOGY, 2017, 14 (05) : 637 - 650