Best practices on the differential expression analysis of multi-species RNA-seq

被引:59
作者
Chung, Matthew [1 ,2 ]
Bruno, Vincent M. [1 ,2 ]
Rasko, David A. [1 ,2 ]
Cuomo, Christina A. [3 ]
Munoz, Jose F. [3 ]
Livny, Jonathan [3 ]
Shetty, Amol C. [1 ]
Mahurkar, Anup [1 ]
Dunning Hotopp, Julie C. [1 ,2 ,4 ]
机构
[1] Univ Maryland Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA
[2] Univ Maryland Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA
[3] Broad Inst, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
RNA-Seq; Transcriptomics; Best practices; Differential gene expression; SINGLE-CELL; MESSENGER-RNA; GENE-EXPRESSION; HOST; PATHOGEN; TRANSCRIPTOME; GENOME; BACTERIAL; QUANTIFICATION; EFFICIENT;
D O I
10.1186/s13059-021-02337-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
引用
收藏
页数:23
相关论文
共 151 条
  • [1] RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans
    Amorim-Vaz, Sara
    Tran, Van Du T.
    Pradervand, Sylvain
    Pagni, Marco
    Coste, Alix T.
    Sanglard, Dominique
    [J]. MBIO, 2015, 6 (05):
  • [2] Anders S., 2010, GENOME BIOL, V11, pR106, DOI [10.1186/gb-2010-11-10-r106, DOI 10.1186/gb-2010-11-10-r106]
  • [3] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    [J]. BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [4] [Anonymous], 2014, ECOSAL PLUS, DOI DOI 10.1128/ECOSALPLUS.ESP-0009-2013
  • [5] Arrigoni A, 2016, METHODS MOL BIOL, V1480, P125, DOI 10.1007/978-1-4939-6380-5_11
  • [6] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [7] scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing
    Avital, Gal
    Avraham, Roi
    Fan, Amy
    Hashimshony, Tamar
    Hung, Deborah T.
    Yanai, Itai
    [J]. GENOME BIOLOGY, 2017, 18
  • [8] A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes
    Avraham, Roi
    Haseley, Nathan
    Fan, Amy
    Bloom-Ackermann, Zohar
    Livny, Jonathan
    Hung, Deborah T.
    [J]. NATURE PROTOCOLS, 2016, 11 (08) : 1477 - 1491
  • [9] Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses
    Avraham, Roi
    Haseley, Nathan
    Brown, Douglas
    Penaranda, Cristina
    Jijon, Humberto B.
    Trombetta, John J.
    Satija, Rahul
    Shalek, Alex K.
    Xavier, Ramnik J.
    Regev, Aviv
    Hung, Deborah T.
    [J]. CELL, 2015, 162 (06) : 1309 - 1321
  • [10] Hybridization-based capture of pathogen mRNA enables paired host-pathogen transcriptional analysis
    Betin, Viktoria
    Penaranda, Cristina
    Bandyopadhyay, Nirmalya
    Yang, Rui
    Abitua, Angela
    Bhattacharyya, Roby P.
    Fan, Amy
    Avraham, Roi
    Livny, Jonathan
    Shoresh, Noam
    Hung, Deborah T.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)