Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering

被引:67
|
作者
Chahal, Sugandha [1 ]
Hussain, Fathima Shahitha Jahir [1 ]
Kumar, Anuj [2 ]
Rasad, Mohammad Syaiful Bahari Abdull [3 ]
Yusoff, Mashitah Mohd [1 ]
机构
[1] Univ Malaysia Pahang, Fac Ind Sci & Technol, Kuantan 26070, Pahang, Malaysia
[2] Czech Tech Univ, Dept Bldg Struct, Fac Civil Engn, Thakurova 7, Prague 16629 6, Czech Republic
[3] IIUM, Kulliyyah Allied Hlth Sci, Dept Biomed Sci, Kuantan 25200, Pahang, Malaysia
关键词
Hydroxyethyl cellulose; Electrospinning; Thermo-mechanical properties; Bone tissue engineering; POLY(VINYL ALCOHOL); SCAFFOLDS; COLLAGEN; FIBERS; HYDROGELS; DESIGN; PVA;
D O I
10.1016/j.ces.2015.12.030
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Development of novel scaffold materials that mimic the extracellular matrix, architecturally and functionally, is becoming highly important to meet the demands of the advances in bone tissue engineering. This paper reports, the fabrication of natural polymer cellulose derived hydroxyethyl cellulose (HEC) based nanostructured scaffolds with uniform fiber morphology through electrospinning. Poly (vinyl alcohol) (PVA) was used as an ionic solvent for supporting the electrospinning of HEC. Scanning electron microscopy and ImageJ analysis revealed the formation of non-woven nanofibers with well-defined porous architecture. The interactions between HEC and PVA in the electrospun nanofibers were studied by differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis thermo-gravimetric analysis; Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy and tensile test. The mechanical properties of scaffolds were significantly altered with different ratios of HEC/PVA. Further, the biocompatibility of HEC/PVA scaffolds was evaluated using human osteosarcoma cells. The SEM images revealed favorable cells attachment and spreading on the nanofibrous scaffolds and MTS assay showed increased cell proliferation after different time periods. Thus, these results indicate that HEC based nanofibrous scaffolds will be a promising candidate for bone tissue engineering. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 29
页数:13
相关论文
共 50 条
  • [31] Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication
    Lam, Nga Tien
    Chollakup, Rungsima
    Smitthipong, Wirasak
    Nimchua, Thidarat
    Sukyai, Prakit
    INDUSTRIAL CROPS AND PRODUCTS, 2017, 100 : 183 - 197
  • [32] In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering
    Jung Bok Lee
    Sung Eun Kim
    Dong Nyoung Heo
    Il Keun Kwon
    Byung-Joon Choi
    Macromolecular Research, 2010, 18 : 1195 - 1202
  • [33] Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering
    Chen, Gang
    Chen, Ning
    Wang, Qi
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 172 : 17 - 28
  • [34] Poly (vinyl alcohol)/Silk Fibroin/Ag NPs composite nanofibers for bone tissue engineering
    Mejia, M. L.
    Moncada, M. E.
    Ossa-Orozco, C. P.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1176 - 1180
  • [35] Development of Collagen/Poly(vinyl alcohol)/Chondroitin Sulfate and Collagen/Poly(vinyl alcohol)/HA Electrospun Scaffolds for Tissue Engineering
    Luis Humberto Delgado-Rangel
    Julia Hernández-Vargas
    Marymar Becerra-González
    Ataúlfo Martínez-Torres
    Evgen Prokhorov
    J. Betzabe González Campos
    Fibers and Polymers, 2019, 20 : 2470 - 2484
  • [36] Development of Collagen/Poly(vinyl alcohol)/Chondroitin Sulfate and Collagen/Poly(vinyl alcohol)/HA Electrospun Scaffolds for Tissue Engineering
    Delgado-Rangel, Luis Humberto
    Hernandez-Vargas, Julia
    Becerra-Gonzalez, Marymar
    Martinez-Torres, Ataulfo
    Prokhorov, Evgen
    Gonzalez Campos, J. Betzabe
    FIBERS AND POLYMERS, 2019, 20 (12) : 2470 - 2484
  • [37] Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering
    Qian, Junmin
    Xu, Weijun
    Yong, Xueqing
    Jin, Xinxia
    Zhang, Wei
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 36 : 95 - 101
  • [38] Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications
    Shalumon, K. T.
    Binulal, N. S.
    Selvamurugan, N.
    Nair, S. V.
    Menon, Deepthy
    Furuike, T.
    Tamura, H.
    Jayakumar, R.
    CARBOHYDRATE POLYMERS, 2009, 77 (04) : 863 - 869
  • [39] Thermally Stabilised Poly(vinyl alcohol) Nanofibrous Materials Produced by Scalable Electrospinning: Applications in Tissue Engineering
    Homer, W. Joseph A.
    Lisnenko, Maxim
    Hauzerova, Sarka
    Heczkova, Bohdana
    Gardner, Adrian C.
    Kostakova, Eva K.
    Topham, Paul D.
    Jencova, Vera
    Theodosiou, Eirini
    POLYMERS, 2024, 16 (14)
  • [40] Fabrication of Porous Chitosan/Poly(vinyl alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering
    Shokrgozar, Mohammad Ali
    Mottaghitalab, Fatemeh
    Mottaghitalab, Vahid
    Farokhi, Mehdi
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2011, 7 (02) : 276 - 284