On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on R3

被引:0
作者
Luehrmann, Jonas [1 ]
Mendelson, Dana [2 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
NEW YORK JOURNAL OF MATHEMATICS | 2016年 / 22卷
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
nonlinear wave equation; almost sure global well-posedness; random initial data; DATA CAUCHY-THEORY; SCHRODINGER-EQUATION; EXISTENCE; SCATTERING; REGULARITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider energy sub-critical defocusing nonlinear wave equations on R-3 and establish the existence of unique global solutions almost surely with respect to a unit-scale randomization of the initial data on Euclidean space. In particular, we provide examples of initial data at super-critical regularities which lead to unique global solutions. The proof is based on probabilistic growth estimates for a new modified energy functional. This work improves upon the authors' previous results (Comm Partial Differential Equations, 2014) by significantly lowering the regularity threshold and strengthening the notion of uniqueness.
引用
收藏
页码:209 / 227
页数:19
相关论文
共 36 条
[1]  
BAHOURI HAJER, 2006, INT MATH RES NOTICES, DOI [10.1155/ IMRN/ 2006/54873, DOI 10.1155/IMRN/2006/54873]
[2]  
Benyi A., 2015, Trans. Amer. Math. Soc. Ser. B, V2, P1, DOI DOI 10.1090/BTRAN/6
[3]  
Benyi A., 2015, Excursions in harmonic analysis, V4, P3
[4]  
Bergh J., 1976, Interpolation spaces. An introduction
[5]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[6]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[7]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[8]   Random data Cauchy theory for supercritical wave equations II: a global existence result [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :477-496
[9]   Random data Cauchy theory for supercritical wave equations I: local theory [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :449-475
[10]   GLOBAL INFINITE ENERGY SOLUTIONS FOR THE CUBIC WAVE EQUATION [J].
Burq, Nicolas ;
Thomann, Laurent ;
Tzvetkov, Nikolay .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (02) :301-313