Uncalibrated factorization using a variable symmetric affine camera

被引:6
作者
Kanatani, Kenichi [1 ]
Sugaya, Yasuyuki
Ackermann, Hanno
机构
[1] Okayama Univ, Dept Comp Sci, Okayama 7008530, Japan
[2] Toyohashi Univ Technol, Dept Informat & Comp Sci, Toyohashi, Aichi 4408580, Japan
关键词
factorization; structure from motion; affine camera; self-calibration; video image analysis;
D O I
10.1093/ietisy/e90-d.5.851
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to reconstruct 3-D Euclidean shape by the Tomasi-Kanade factorization, one needs to specify an affine camera model such as orthographic, weak perspective, and paraperspective. We present a new method that does not require any such specific models. We show that a minimal requirement for an affine camera to mimic perspective projection leads to a unique camera model, called symmetric affine camera, which has two free functions. We determine their values from input images by linear computation and demonstrate by experiments that an appropriate camera model is automatically selected.
引用
收藏
页码:851 / 858
页数:8
相关论文
共 17 条
[1]  
[Anonymous], MEM FAC ENG OKAYAMA
[2]   Paraperspective affine [J].
Basri, R .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 19 (02) :169-179
[3]  
Deguchi K, 1996, IEICE T INF SYST, VE79D, P1329
[4]  
Hartley R., 2000, MULTIPLE VIEW GEOMET
[5]  
Kanatani K, 2002, LECT NOTES COMPUT SC, V2352, P335
[6]  
Kanatani K., 1993, GEOMETRIC COMPUTATIO
[7]  
KANATANI K, 2006, MEM FAC ENG OKAYAMA, V40, P53
[8]  
Kanatani K., 2002, INT J IMAGE GRAPH, V2, P179, DOI DOI 10.1142/S0219467802000585
[9]  
Kanatani K., 1990, GROUP THEORETICAL ME
[10]   A paraperspective factorization method for shape and motion recovery [J].
Poelman, CJ ;
Kanade, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (03) :206-218