Band-gap engineering of SnO2

被引:75
作者
Mounkachi, O. [1 ]
Salmani, E. [2 ]
Lakhal, M. [1 ,2 ]
Ez-Zahraouy, H. [2 ]
Hamedoun, M. [1 ]
Benaissa, M. [2 ]
Kara, A. [3 ]
Ennaoui, A. [4 ,5 ]
Benyoussef, A. [1 ,2 ]
机构
[1] MAScIR, Inst Nanomat & Nanotechnol, Rabat, Morocco
[2] Univ Mohammed 5, Fac Sci, LMPHE, Rabat, Morocco
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] QEERI, Doha, Qatar
[5] HBKU, Doha, Qatar
关键词
Semiconductors; SnO2; Multilayer; DFT; Band-gap engineering; QUANTUM CONFINEMENT; THIN-FILMS; TEMPERATURE; DEPOSITION; WIRES; DOTS;
D O I
10.1016/j.solmat.2015.09.062
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using first principles calculations based on density functional theory (DFT), the electronic properties of SnO2 bulk and thin films are studied. The electronic band structures and total energy over a range of SnO2-multilayer have been studied using DFT within the local density approximation (LDA). We show that changing the interatomic distances and relative positions of atoms could modify the band-gap energy of SnO2 semiconductors. Electronic-structure calculations show that band-gap engineering is a powerful technique for the design of new promising candidates with a direct band-gap. Our results present an important advancement toward controlling the band structure and optoelectronic properties of few-layer SnO2 via strain engineering, with important implications for practical device applications. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
[21]   Comparison of some physical properties for SnO2, SnO2: F and SnO2: Sb films deposited on glass substrates [J].
Tatar, Demet ;
Turgut, Guven ;
Sonmez, Erdal ;
Duzgun, Bahattin .
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2013, 15 (9-10) :1026-1031
[22]   Silver layer instability in a SnO2/Ag/SnO2 trilayer on silicon [J].
Kim, Suk Jun ;
Stach, Eric A. ;
Handwerker, Carol A. .
THIN SOLID FILMS, 2012, 520 (19) :6189-6195
[23]   Optical characteristic and gap states distribution of amorphous SnO2:(Zn, In) film [J].
Zhang Zhi-Guo .
CHINESE PHYSICS B, 2010, 19 (12)
[24]   Experimental determination of the electronic band structure of SnO2 [J].
Reimann, K ;
Steube, M .
SOLID STATE COMMUNICATIONS, 1998, 105 (10) :649-652
[25]   Realization of band-gap engineering of ZnO thin films via Ca alloying [J].
Cao, Ling ;
Jiang, Jie ;
Zhu, Liping .
MATERIALS LETTERS, 2013, 100 :201-203
[26]   Band-gap engineering in chemically conjugated bilayer graphene: Ab initio calculations [J].
Dinh Loc Duong ;
Lee, Seung Mi ;
Chae, Sang Hul ;
Quang Huy Ta ;
Lee, Si Young ;
Han, Gang Hee ;
Bae, Jung Jun ;
Lee, Young Hee .
PHYSICAL REVIEW B, 2012, 85 (20)
[27]   Band-gap grading in Cu(In,Ga)Se2 solar cells [J].
Gloeckler, M ;
Sites, JR .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (11) :1891-1894
[28]   Synthesis of ZnO, SnO2 Nanoparticles and Preparation of ZnO-SnO2 Nanocomposites [J].
Gultekin, Deniz ;
Alaf, Mirac ;
Guler, Mehmet Oguz ;
Akbulut, Hatenn .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (12) :9175-9182
[29]   Isotope composition dependence of the band-gap energy in diamond [J].
Watanabe, H. ;
Koretsune, T. ;
Nakashima, S. ;
Saito, S. ;
Shikata, S. .
PHYSICAL REVIEW B, 2013, 88 (20)
[30]   Temperature and Ambient Band Structure Changes in SnO2 for the Optimization of Hydrogen Response [J].
Filippatos, Petros-Panagis ;
Soultati, Anastasia ;
Kelaidis, Nikolaos ;
Davazoglou, Dimitris ;
Vasilopoulou, Maria ;
Drivas, Charalampos ;
Kennou, Stella ;
Chroneos, Alexander .
INORGANICS, 2023, 11 (03)