Band-gap engineering of SnO2

被引:75
作者
Mounkachi, O. [1 ]
Salmani, E. [2 ]
Lakhal, M. [1 ,2 ]
Ez-Zahraouy, H. [2 ]
Hamedoun, M. [1 ]
Benaissa, M. [2 ]
Kara, A. [3 ]
Ennaoui, A. [4 ,5 ]
Benyoussef, A. [1 ,2 ]
机构
[1] MAScIR, Inst Nanomat & Nanotechnol, Rabat, Morocco
[2] Univ Mohammed 5, Fac Sci, LMPHE, Rabat, Morocco
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] QEERI, Doha, Qatar
[5] HBKU, Doha, Qatar
关键词
Semiconductors; SnO2; Multilayer; DFT; Band-gap engineering; QUANTUM CONFINEMENT; THIN-FILMS; TEMPERATURE; DEPOSITION; WIRES; DOTS;
D O I
10.1016/j.solmat.2015.09.062
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using first principles calculations based on density functional theory (DFT), the electronic properties of SnO2 bulk and thin films are studied. The electronic band structures and total energy over a range of SnO2-multilayer have been studied using DFT within the local density approximation (LDA). We show that changing the interatomic distances and relative positions of atoms could modify the band-gap energy of SnO2 semiconductors. Electronic-structure calculations show that band-gap engineering is a powerful technique for the design of new promising candidates with a direct band-gap. Our results present an important advancement toward controlling the band structure and optoelectronic properties of few-layer SnO2 via strain engineering, with important implications for practical device applications. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 50 条
[1]   Band gap engineering in SnO2 by Pb doping [J].
Sarangi, S. N. ;
Pradhan, Gopal K. ;
Samal, D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 762 :16-20
[2]   Quantum confinement effects and band gap engineering of SnO2 nanocrystals in a MgO matrix [J].
Sahana, M. B. ;
Sudakar, C. ;
Dixit, A. ;
Thakur, J. S. ;
Naik, R. ;
Naik, V. M. .
ACTA MATERIALIA, 2012, 60 (03) :1072-1078
[3]   Band Gap Engineering of SnO2 by Epitaxial Strain: Experimental and Theoretical Investigations [J].
Zhou, Wei ;
Liu, Yanyu ;
Yang, Yuzhe ;
Wu, Ping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (12) :6448-6453
[4]   Influence of Fe-doping on the structural and photoluminescence properties and on the band-gap narrowing of SnO2 nanoparticles [J].
Jithin, P. V. ;
Sudheendran, K. ;
Sankaran, K. J. ;
Kurian, Joji .
OPTICAL MATERIALS, 2021, 120
[5]   Band-gap engineering of rutile-structured SnO2-GeO2-SiO2 alloy system [J].
Takane, Hitoshi ;
Oth, Yuichi ;
Wakamatsu, Takeru ;
Araki, Tsutomu ;
Tanaka, Katsuhisa ;
Kaneko, Kentaro .
PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
[6]   Strain-induced optical band gap variation of SnO2 films [J].
Rus, S. F. ;
Ward, T. Z. ;
Herklotz, A. .
THIN SOLID FILMS, 2016, 615 :103-106
[7]   A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics [J].
Hu, Zhaosheng ;
Lin, Zhenhua ;
Su, Jie ;
Zhang, Jincheng ;
Chang, Jingjing ;
Hao, Yue .
SOLAR RRL, 2019, 3 (12)
[8]   Optical band gap tuning of discontinuous [SnO2/Mn]n multilayers [J].
Saipriya, S. ;
Singh, R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (38) :9318-9321
[9]   Band-gap engineering in CuIn(Se,S)2 absorbers for solar cells [J].
Bekker, J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (05) :539-543
[10]   Band-Gap Engineering of CdS, CdSe and ZnSe : First-Principles Calculations [J].
Lamouri, Rachida ;
Salmani, El Mehdi ;
Ez-zahraouy, Hamid ;
Benyoussef, Abdelilah .
PROCEEDINGS OF 2016 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 16), 2016, :120-123