Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures

被引:56
|
作者
Tokiwa, Yoshifumi [1 ,2 ]
Bachus, Sebastian [1 ]
Kavita, Kavita [1 ]
Jesche, Anton [1 ]
Tsirlin, Alexander A. [1 ]
Gegenwart, Philipp [1 ]
机构
[1] Univ Augsburg, Ctr Elect Correlat & Magnetism, Expt Phys 6, Augsburg, Germany
[2] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki, Japan
关键词
D O I
10.1038/s43246-021-00142-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Generation of very low temperatures has been crucially important for applications and fundamental research, as low-temperature quantum coherence enables operation of quantum computers and formation of exotic quantum states, such as superfluidity and superconductivity. One of the major techniques to reach milli-Kelvin temperatures is adiabatic demagnetization refrigeration. This method uses almost non-interacting magnetic moments of paramagnetic salts where large distances suppress interactions between the moments. The large spatial separations are facilitated by water molecules, with a drawback of reduced stability of the material. Here, we show that the water-free frustrated magnet KBaYb(BO3)(2) can be ideal for refrigeration, achieving at least 22 mK. Compared to conventional refrigerants, KBaYb(BO3)(2) does not degrade even under high temperatures and ultra-high vacuum. Further, its magnetic frustration and structural randomness enable cooling to temperatures several times lower than the energy scale of magnetic interactions, which is the main limiting factor for the base temperature of conventional refrigerants.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures
    Yoshifumi Tokiwa
    Sebastian Bachus
    Kavita Kavita
    Anton Jesche
    Alexander A. Tsirlin
    Philipp Gegenwart
    Communications Materials, 2
  • [2] Cooling down MiniGRAIL to milli-Kelvin temperatures
    De Waard, A
    Gottardi, L
    Bassan, M
    Coccia, E
    Fafone, V
    Flokstra, J
    Karbalai-Sadegh, A
    Minenkov, Y
    Moleti, A
    Pallottino, GV
    Podt, M
    Pors, BJ
    Reinske, W
    Rocchi, A
    Shumack, A
    Srinivas, S
    Visco, M
    Frossati, G
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S465 - S471
  • [3] Optimal cooling configurations for quantum information processing at milli-kelvin temperatures
    Poole, T.
    Marsh, T.
    Matthews, A. J.
    CRYOGENICS, 2022, 126
  • [4] Vibrating coil magnetometer for milli-Kelvin temperatures
    Legl, S.
    Pfleiderer, C.
    Kraemer, K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (04):
  • [5] Superconducting RFTES Detector a Milli-Kelvin Temperatures
    Merenkov, Alexey, V
    Chichkov, Vladimir, I
    Ermakov, Andrey B.
    Ustinov, Alexey, V
    Shitov, Sergey, V
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (07)
  • [6] Utilizing frustration in Gd- and Yb-based oxides for milli-Kelvin adiabatic demagnetization refrigeration
    Treu, Tim
    Klinger, Marvin
    Oefele, Noah
    Telang, Prachi
    Jesche, Anton
    Gegenwart, Philipp
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (01)
  • [7] Determination of the Permittivity of Transmission Lines at Milli-Kelvin Temperatures
    Stanley, Manoj
    Parker-Jervis, Rowan
    Skinner, James
    De Graaf, Sebastian
    Lindstrom, Tobias
    Cunningham, John E.
    Ridler, Nick M.
    IEEE ACCESS, 2023, 11 : 60626 - 60634
  • [8] Fully Automated AC Susceptometer for Milli-Kelvin Temperatures in a DynaCool PPMS
    Amann, Andreas
    Nallaiyan, Manivannan
    Montes, Luis
    Wilson, Alan
    Spagna, Stefano
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (04)
  • [9] Phase Diffusion in Low-EJ Josephson Junctions at Milli-Kelvin Temperatures
    Lu, Wen-Sen
    Kalashnikov, Konstantin
    Kamenov, Plamen
    DiNapoli, Thomas J.
    Gershenson, Michael E.
    ELECTRONICS, 2023, 12 (02)
  • [10] Characterizing Scattering Parameters of Superconducting Quantum Integrated Circuits at Milli-Kelvin Temperatures
    Stanley, Manoj
    De Graaf, Sebastian
    Honigl-Decrinis, Teresa
    Lindstrom, Tobias
    Ridler, Nick M.
    IEEE Access, 2022, 10 : 43376 - 43386