A note on f′′′+ff′′+ λ(1-f′2)=0 with λε (-1/2,0) arising in boundary layer theory

被引:11
|
作者
Yang, GC [1 ]
机构
[1] Chengdu Univ Informat Technol, Dept Computat Sci, Chengdu 610041, Peoples R China
关键词
boundary value problems; fixed points; existence results;
D O I
10.1016/j.aml.2003.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any lambda is an element of (-1/2, 0), there exists f(eta) is an element of C-1[0, +infinity) such that f''' + f f'' + lambda(1 - f'(2)) = 0, a.e. in (0,+infinity), f(0)=0, f'(0)=0, f(+oo)=1, which arises in boundary layer theory in fluid mechanics. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1261 / 1265
页数:5
相关论文
共 50 条
  • [1] On the equation f‴ + f f″ + λ(1 - F′ 2) = 0 with λ ≤ -1/2 arising in boundary layer theory
    Yang G.C.
    Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 479 - 483
  • [2] A Characterization of Vertex Operator Algebra L(1/2,0) ⊗ L(1/2,0)
    Dong, Chongying
    Jiang, Cuipo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (01) : 69 - 88
  • [3] F-theory and AdS3/CFT2 (2,0)
    Couzens, Christopher
    Martelli, Dario
    Schafer-Nameki, Sakura
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [4] F-theory on quotient threefolds with (2,0) discrete superconformal matter
    Lara B. Anderson
    Antonella Grassi
    James Gray
    Paul-Konstantin Oehlmann
    Journal of High Energy Physics, 2018
  • [5] F-theory on quotient threefolds with (2,0) discrete superconformal matter
    Anderson, Lara B.
    Grassi, Antonella
    Gray, James
    Oehlmann, Paul-Konstantin
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [6] The partition bundle of type AN-1 (2,0) theory
    Henningson, Mans
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (04):
  • [7] STATISTICAL PREDICTION - MODEL FOR MEDIANS, F0E,F0F1,F0F2,HM AND DIURNAL VALUES OF F0F2
    KOEN, MA
    PAVLOV, NN
    OSTROVSKY, GI
    BURENKOV, SI
    GEOMAGNETIZM I AERONOMIYA, 1992, 32 (04): : 78 - 83
  • [8] Solutions in the (1/2,0) ⊕ (0,1/2) Representation of the Lorentz Group
    Dvoeglazov, Valeriy V.
    11TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, 2019, 1239
  • [9] The Equation f"′+ff"+g(f′)=0 and the Associated Boundary Value Problems
    Brighi, Bernard
    RESULTS IN MATHEMATICS, 2012, 61 (3-4) : 355 - 391
  • [10] The Equation f′′′ + ff′′ + g(f′) = 0 and the Associated Boundary Value Problems
    Bernard Brighi
    Results in Mathematics, 2012, 61 : 355 - 391