Properties of chains of prime ideals in an amalgamated algebra along an ideal

被引:144
作者
D'Anna, Marco [1 ]
Finocchiaro, Carmelo A. [2 ]
Fontana, Marco [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Catania, Italy
[2] Univ Roma Tre, Dipartimento Matemat, Rome, Italy
关键词
GORENSTEIN RINGS; INTEGRAL-DOMAINS; DUPLICATION; EXTENSIONS;
D O I
10.1016/j.jpaa.2009.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f : A -> B be a ring homomorphism and let J be an ideal of B. In this paper, we Study the amalgamation of A with B along J with respect to f (denoted by A infinity(f) J), a construction that provides a general frame for Studying the amalgamated duplication of a ring along an ideal, introduced and studied by D'Anna and Fontana in 2007, and other classical constructions (such as the A + XB[X], the A + XB[[X]] and the D + M constructions). In particular, we completely describe the prime spectrum of the amalgamated duplication and we give bounds for its Krull dimension. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1633 / 1641
页数:9
相关论文
共 21 条
[11]   On the prime spectrum, Krull dimension and catenarity of integral domains of the form A plus XB[[X]] [J].
Dobbs, DE ;
Khalis, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 159 (01) :57-73
[12]  
Dorroh J. L., 1932, B AM MATH SOC, V38, P85
[13]  
FONTANA M, 1994, LECT NOTES APPL MATH, V153, P211
[14]  
Fontana M., 1980, ANN MAT PUR APPL, V123, P331
[15]   COMMUTATIVE EXTENSIONS BY CANONICAL MODULES ARE GORENSTEIN RINGS [J].
FOSSUM, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) :395-400
[16]  
Gilmer R., 1992, Queens Papers in Pure and Applied Mathematics, V90
[17]  
Huckaba J. A., 1988, COMMUTATIVE RINGS ZE
[18]   Trivial extensions defined by coherent-like conditions [J].
Kabbaj, SE ;
Mahdou, N .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (10) :3937-3953
[19]  
Kaplansky I., 1974, Commutative Rings
[20]   Zero-divisor graphs of amalgamated duplication of a ring along an ideal [J].
Maimani, Hamid Reza ;
Yassemi, Siamak .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) :168-174