One-dimensional global attractor for the damped and driven sine-Gordon equation
被引:6
|
作者:
Qian, M
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Qian, M
[1
]
Zhou, SF
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Zhou, SF
[1
]
Zhu, S
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Zhu, S
[1
]
机构:
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源:
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY
|
1998年
/
41卷
/
02期
关键词:
sine-Gordon equation;
global attractor;
horizontal curve;
D O I:
10.1007/BF02897436
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The damped and driven sine-Gordon equation with Neumann boundary conditions is studied. It is shown that it has a one-dimensional global attractor in a suitable functional space when the "damping" and the "diffusing" are not very small.