Exact solution of the (1+1)-dimensional Dirac equation with vector and scalar linear potentials in the presence of a minimal length

被引:49
作者
Chargui, Y. [1 ]
Trabelsi, A. [1 ]
Chetouani, L. [2 ]
机构
[1] Fac Sci Tunis, Unite Rech Phys Nucl & Hautes Energies, Tunis 1080, Tunisia
[2] Univ Constantine, Inst Phys, Dept Phys Theor, Constantine, Algeria
关键词
Dirac equation; Linear potential; Minimal length; UNCERTAINTY RELATION; QUANTUM-MECHANICS; HYDROGEN; OSCILLATOR;
D O I
10.1016/j.physleta.2009.11.028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact Solution of the (1 + 1)-dimensional Dirac equation with vector and scalar linear potentials in the context of modified quantum mechanics characterized by the presence of a non-zero minimum uncertainty in position. The bound-states energy spectrum and the corresponding momentum space wavefunctions are exactly obtained. Our findings are compared with approximated results existing in the literature. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:531 / 534
页数:4
相关论文
共 33 条
[1]   Minimal length uncertainty relation and the hydrogen spectrum [J].
Akhoury, R ;
Yao, YP .
PHYSICS LETTERS B, 2003, 572 (1-2) :37-42
[2]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[3]   Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Okamura, N ;
Rayyan, S ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 66 (02) :1
[4]   Regularization of the singular inverse square potential in quantum mechanics with a minimal length [J].
Bouaziz, Djamil ;
Bawin, Michel .
PHYSICAL REVIEW A, 2007, 76 (03)
[5]   Minimal length uncertainty relation and the hydrogen atom [J].
Brau, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44) :7691-7696
[6]   Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[7]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[8]   Bosonic oscillator in the presence of minimal length [J].
Falek, M. ;
Merad, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
[9]  
Fitio T.V., 2006, J PHYS A, V39, P2143
[10]   FUN AND FRUSTRATION WITH HYDROGEN IN A 1+1 DIMENSION [J].
GALIC, H .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (04) :312-317