Adapting a commercial shear rheometer for applications in cartilage research

被引:26
作者
Boettcher, K. [1 ,2 ]
Grumbein, S. [1 ,2 ]
Winkler, U. [1 ,2 ]
Nachtsheim, J. [1 ,2 ]
Lieleg, O. [1 ,2 ]
机构
[1] Tech Univ Munich, Zent Inst Med Tech, D-85748 Garching, Germany
[2] Tech Univ Munich, Fak Maschinenwesen, D-85748 Garching, Germany
关键词
BOVINE ARTICULAR-CARTILAGE; UNCONFINED COMPRESSION; FRICTIONAL RESPONSE; STRESS-RELAXATION; BEHAVIOR; INDENTATION; ULTRASOUND; DIGESTION; CREEP;
D O I
10.1063/1.4894820
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Cartilage research typically requires a broad range of experimental characterization techniques and thus various testing setups. Here, we describe how several of those tests can be performed with a single experimental platform, i.e. a commercial shear rheometer. Although primarily designed for shear experiments, such a rheometer can be equipped with different adapters to perform indentation and creep measurements, quantify alterations in the sample thickness, and conduct friction measurements in addition to shear rheology. Beyond combining four distinct experimental methods into one setup, the modified rheometer allows for performing material characterizations over a broad range of time scales, frequencies, and normal loads. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 24 条
[1]  
Barbour KE, 2013, MMWR-MORBID MORTAL W, V62, P869
[2]   Frictional response of bovine articular cartilage under creep loading following proteoglycan digestion with chondroitinase ABC [J].
Basalo, IM ;
Chen, FH ;
Hung, CT ;
Ateshian, GA .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (01) :131-134
[3]   Effects of enzymatic degradation on the frictional response of articular cartilage in stress relaxation [J].
Basalo, IM ;
Raj, D ;
Krishnan, R ;
Chen, FH ;
Hung, CT ;
Ateshian, GA .
JOURNAL OF BIOMECHANICS, 2005, 38 (06) :1343-1349
[4]   Cartilage interstitial fluid load support in unconfined compression following enzymatic digestion [J].
Basalo, IP ;
Mauck, RL ;
Kelly, TAN ;
Nicoll, SB ;
Chen, FH ;
Hung, CT ;
Ateshian, GA .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (06) :779-786
[5]  
Dumbleton J.H., 1981, Tribology of natural and artificial joints, V3
[6]   SWELLING OF ARTICULAR-CARTILAGE AND OTHER CONNECTIVE TISSUES - ELECTROMECHANOCHEMICAL FORCES [J].
EISENBERG, SR ;
GRODZINSKY, AJ .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1985, 3 (02) :148-159
[7]   Dynamic nanoindentation of articular porcine cartilage [J].
Franke, O. ;
Goeken, M. ;
Meyers, M. A. ;
Durst, K. ;
Hodge, A. M. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (04) :789-795
[8]   Time-Dependent Nanomechanics of Cartilage [J].
Han, Lin ;
Frank, Eliot H. ;
Greene, Jacqueline J. ;
Lee, Hsu-Yi ;
Hung, Han-Hwa K. ;
Grodzinsky, Alan J. ;
Ortiz, Christine .
BIOPHYSICAL JOURNAL, 2011, 100 (07) :1846-1854
[9]   Effect of electrostatic interactions between glycosaminoglycans on the shear stiffness of cartilage: A molecular model and experiments [J].
Jin, MS ;
Grodzinsky, AJ .
MACROMOLECULES, 2001, 34 (23) :8330-8339
[10]   COMPARISON OF OPTICAL, NEEDLE PROBE AND ULTRASONIC TECHNIQUES FOR THE MEASUREMENT OF ARTICULAR-CARTILAGE THICKNESS [J].
JURVELIN, JS ;
RASANEN, T ;
KOLMONEN, P ;
LYYRA, T .
JOURNAL OF BIOMECHANICS, 1995, 28 (02) :231-235