Utilizing somatic mutation data from numerous studies for cancer research: proof of concept and applications

被引:13
作者
Amar, D. [1 ]
Izraeli, S. [2 ,3 ]
Shamir, R. [1 ]
机构
[1] Tel Aviv Univ, Blavatnik Sch Comp Sci, Tel Aviv Univ Campus, IL-69978 Tel Aviv, Israel
[2] Sheba Med Ctr, Safra Childrens Hosp, Dept Pediat Hematol Oncol, Ramat Gan, Israel
[3] Tel Aviv Univ, Sackler Sch Med, Tel Aviv, Israel
基金
以色列科学基金会;
关键词
HEDGEHOG SIGNALING PATHWAY; GENE-EXPRESSION PROFILES; INTEGRATED ANALYSIS; IDENTIFICATION; CYTOSCAPE; ONTOLOGY; BIOLOGY; SMAD4; KRAS;
D O I
10.1038/onc.2016.489
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Large cancer projects measure somatic mutations in thousands of samples, gradually assembling a catalog of recurring mutations in cancer. Many methods analyze these data jointly with auxiliary information with the aim of identifying subtype-specific results. Here, we show that somatic gene mutations alone can reliably and specifically predict cancer subtypes. Interpretation of the classifiers provides useful insights for several biomedical applications. We analyze the COSMIC database, which collects somatic mutations from The Cancer Genome Atlas (TCGA) as well as from many smaller scale studies. We use multi-label classification techniques and the Disease Ontology hierarchy in order to identify cancer subtype-specific biomarkers. Cancer subtype classifiers based on TCGA and the smaller studies have comparable performance, and the smaller studies add a substantial value in terms of validation, coverage of additional subtypes, and improved classification. The gene sets of the classifiers are used for threefold contribution. First, we refine the associations of genes to cancer subtypes and identify novel compelling candidate driver genes. Second, using our classifiers we successfully predict the primary site of metastatic samples. Third, we provide novel hypotheses regarding detection of subtype-specific synthetic lethality interactions. From the cancer research community perspective, our results suggest that curation efforts, such as COSMIC, have great added and complementary value even in the era of large international cancer projects.
引用
收藏
页码:3375 / 3383
页数:9
相关论文
共 51 条
[1]   Integrated analysis of numerous heterogeneous gene expression profiles for detecting robust disease-specific biomarkers and proposing drug targets [J].
Amar, David ;
Hait, Tom ;
Izraeli, Shai ;
Shamir, Ron .
NUCLEIC ACIDS RESEARCH, 2015, 43 (16) :7779-7789
[2]   Constructing module maps for integrated analysis of heterogeneous biological networks [J].
Amar, David ;
Shamir, Ron .
NUCLEIC ACIDS RESEARCH, 2014, 42 (07) :4208-4219
[3]  
[Anonymous], 1995, MACHINE LEARNING
[4]  
[Anonymous], BR J CANC
[5]  
[Anonymous], DATA MINING R LEARNI
[6]  
[Anonymous], BIOINFORMATICS
[7]   Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer [J].
Bardeesy, Nabeel ;
Cheng, Kuang-hung ;
Berger, Justin H. ;
Chu, Gerald C. ;
Pahler, Jessica ;
Olson, Peter ;
Hezel, Aram F. ;
Horner, James ;
Lauwers, Gregory Y. ;
Hanahan, Douglas ;
DePinho, Ronald A. .
GENES & DEVELOPMENT, 2006, 20 (22) :3130-3146
[8]  
Breiman L., 2001, Machine Learning, V45, P5
[9]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[10]   Comprehensivemolecular characterization of clear cell renal cell carcinoma [J].
Creighton, Chad J. ;
Morgan, Margaret ;
Gunaratne, Preethi H. ;
Wheeler, David A. ;
Gibbs, Richard A. ;
Robertson, A. Gordon ;
Chu, Andy ;
Beroukhim, Rameen ;
Cibulskis, Kristian ;
Signoretti, Sabina ;
Vandin, Fabio ;
Wu, Hsin-Ta ;
Raphael, Benjamin J. ;
Verhaak, Roel G. W. ;
Tamboli, Pheroze ;
Torres-Garcia, Wandaliz ;
Akbani, Rehan ;
Weinstein, John N. ;
Reuter, Victor ;
Hsieh, James J. ;
Brannon, A. Rose ;
Hakimi, A. Ari ;
Jacobsen, Anders ;
Ciriello, Giovanni ;
Reva, Boris ;
Ricketts, Christopher J. ;
Linehan, W. Marston ;
Stuart, Joshua M. ;
Rathmell, W. Kimryn ;
Shen, Hui ;
Laird, Peter W. ;
Muzny, Donna ;
Davis, Caleb ;
Morgan, Margaret ;
Xi, Liu ;
Chang, Kyle ;
Kakkar, Nipun ;
Trevino, Lisa R. ;
Benton, Susan ;
Reid, Jeffrey G. ;
Morton, Donna ;
Doddapaneni, Harsha ;
Han, Yi ;
Lewis, Lora ;
Dinh, Huyen ;
Kovar, Christie ;
Zhu, Yiming ;
Santibanez, Jireh ;
Wang, Min ;
Hale, Walker .
NATURE, 2013, 499 (7456) :43-+