On optimal grid construction in numerical integration

被引:0
|
作者
Wang, S [1 ]
Lee, WR [1 ]
Teo, KL [1 ]
机构
[1] Curtin Univ Technol, Sch Math & Stat, Perth, WA 6845, Australia
基金
澳大利亚研究理事会;
关键词
optimal grid; numerical integration; nonlinear optimization; quadrature rules;
D O I
10.1080/03052159908941296
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an optimization approach to the construction of optimal grids for numerical integration in one dimension by some well-known quadrature rules. In this approach, a conventional numerical integration problem is posed as an optimization problem so that the solution of the latter yields vertices of the optimal grid. Numerical experiments are performed to verify the effectiveness of the approach. The numerical results show that, for a fixed number of mesh nodes, the numerical integrals on a grid obtained from the present method is at least one order of magnitude more accurate than that on the uniform grid.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [1] Numerical studies of optimal grid construction
    Chen, T.-F.
    Fix, G.J.
    Yang, H.D.
    Numerical Methods for Partial Differential Equations, 1996, 12 (02):
  • [2] Storage integration for optimal grid support
    Sima, Catalina Alexandra
    Popescu, Mihai Octavian
    Popescu, Claudia Laurenta
    Dumbrava, Virgil
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [3] On a Method of Construction of Numerical Integration Formulas
    Korotchenko, Anatoliy G.
    Smoryakova, Valentina M.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [4] Grid-based numerical integration and visualization
    Li, SJ
    Kaugars, K
    de Doncker, E
    ICCIMA 2005: SIXTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, PROCEEDINGS, 2005, : 260 - 265
  • [5] Asymptotically optimal weighted numerical integration
    Mathe, P
    JOURNAL OF COMPLEXITY, 1998, 14 (01) : 34 - 48
  • [6] Optimal parametrization in numerical construction of curve
    Kuznetsov, E. B.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (05): : 658 - 671
  • [7] On Distribution Grid Optimal Power Flow Development and Integration
    Haat, Sarmad
    Sadnan, Rabayet
    Slay, Tylor E.
    Nazir, Nawat.
    Poudel, Shiva
    Bhatti, Bilal
    Reiman, Andy
    Follum, Jim
    McKinsey, Joseph
    Elgindy, Tarek
    Yang, Rui
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [8] CONSTRUCTION OF FULLY SYMMETRIC NUMERICAL INTEGRATION FORMULAS
    MCNAMEE, J
    STENGER, F
    NUMERISCHE MATHEMATIK, 1967, 10 (04) : 327 - &
  • [9] Zinterhof sequences in GRID-based numerical integration
    Hofbauer, Heinz
    Uhl, Andreas
    Zinterhof, Peter
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 495 - 510
  • [10] OPTIMAL ALGORITHMS FOR ITERATED NUMERICAL-INTEGRATION
    SUKHAREV, AG
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 28 (03) : 375 - 390