An Introduction to Motivic Feynman Integrals

被引:3
作者
Rella, Claudia [1 ]
机构
[1] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
关键词
scattering amplitudes; Feynman diagrams; multiple zeta values; Hodge structures; periods of motives; Galois theory; Tannakian categories; MULTIPLE ZETA VALUES; ALGEBRAIC VARIETY; GALOIS COACTION; ELECTRON G-2; FIELD; SINGULARITIES; AMPLITUDES; RESOLUTION; PERIODS; KNOTS;
D O I
10.3842/SIGMA.2021.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article gives a short step-by-step introduction to the representation of parametric Feynman integrals in scalar perturbative quantum field theory as periods of motives. The application of motivic Galois theory to the algebro-geometric and categorical structures underlying Feynman graphs is reviewed up to the current state of research. The example of primitive log-divergent Feynman graphs in scalar massless phi(4) quantum field theory is analysed in detail.
引用
收藏
页数:56
相关论文
共 72 条
[1]  
Abreu S., 2018, ARXIV180800069
[2]   From positive geometries to a coaction on hypergeometric functions [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan ;
Matthew, James .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
[3]   Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12)
[4]  
Andr Y., 2004, PANORAMAS SYNTH ESES, V17
[5]  
[Anonymous], MULTIPLE ZETA VALUES
[6]  
[Anonymous], 1971, ACT C INT MATH NIC 1
[7]   On motives associated to graph polynomials [J].
Bloch, Spencer ;
Esnault, Helene ;
Kreimer, Dirk .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (01) :181-225
[8]   The Multiple Zeta Value data mine [J].
Bluemlein, J. ;
Broadhurst, D. J. ;
Vermaseren, J. A. M. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) :582-625
[9]   FEYNMAN GRAPH POLYNOMIALS [J].
Bogner, Christian ;
Weinzierl, Stefan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (13) :2585-2618
[10]   Periods and Feynman integrals [J].
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)