A design of selective solar absorber for high temperature applications

被引:39
作者
AL-Rjoub, A. [1 ]
Rebouta, L. [1 ]
Costa, P. [1 ]
Barradas, N. P. [2 ]
Alves, E. [3 ]
Ferreira, P. J. [4 ,5 ]
Abderrafi, K. [4 ]
Matilainen, A. [6 ]
Pischow, K. [6 ]
机构
[1] Univ Minho, Ctr Phys, Campus Azurem, P-4800058 Guimaraes, Portugal
[2] Inst Super Tecn, Ctr Ciencias & Tecnol Nucl, EN 10,Km 139-7, P-2695066 Bobadela Lrs, Portugal
[3] Inst Super Tecn, Campus Tecnol & Nucl,EN 10,Km 139-7, P-2695066 Bobadela Lrs, Portugal
[4] Int Iberian Nanotechnol Lab, Av Mestre Jose Veiga S-N, P-4715330 Braga, Portugal
[5] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[6] Savo Solar Oy, Insinoorinkatu 7, Mikkeli 50100, Finland
关键词
Solar selective absorber; Optical constants; Dielectric function; Sputtered CrAlSiNx/CrAlSiOyNx; COATINGS;
D O I
10.1016/j.solener.2018.04.052
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a design of multilayer solar selective absorber for high temperature applications. The optical stack is composed of four layers deposited by magnetron sputtering on stainless steel substrates. The first is a back-reflector tungsten layer, which is followed by two absorption layers based on CrAlSiNx/CrAlSiOyNx,, structure for phase interference. The final layer is an antireflection layer of SiAlOx. The design was theoretically modelled with SCOUT software using transmittance and reflectance curves of individual thin layers, which were deposited on glass substrates. The final design shows simultaneously high solar absorbance alpha = 95.2% and low emissivity epsilon = 9.8% (calculated for 400 degrees C) together with high thermal stability at 400 degrees C, in air, and 600 degrees C in vacuum for 650 h.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 23 条
[1]   Characterization of magnetron sputtered sub-stoichiometric CrAlSiNx and CrAlSiOyNx coatings [J].
Al-Rjoub, A. ;
Costa, P. ;
Rebouta, L. ;
Cerqueira, M. F. ;
Alpuim, P. ;
Barradas, N. P. ;
Alves, E. .
SURFACE & COATINGS TECHNOLOGY, 2017, 328 :134-141
[2]   Advanced physics and algorithms in the IBA DataFurnace [J].
Barradas, N. P. ;
Jeynes, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2008, 266 (08) :1875-1879
[3]   Thermal stability of TiAlN/TiAlON/Si3N4 tandem absorbers prepared by reactive direct current magnetron sputtering [J].
Barshilia, Harish C. ;
Selvakumar, N. ;
Rajam, K. S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2007, 25 (02) :383-390
[4]   MATERIALS FOR PHOTOTHERMAL SOLAR-ENERGY CONVERSION [J].
BOGAERTS, WF ;
LAMPERT, CM .
JOURNAL OF MATERIALS SCIENCE, 1983, 18 (10) :2847-2875
[5]   METAL-INSULATOR COMPOSITE SELECTIVE ABSORBERS [J].
CRAIGHEAD, HG ;
BARTYNSKI, R ;
BUHRMAN, RA ;
WOJCIK, L ;
SIEVERS, AJ .
SOLAR ENERGY MATERIALS, 1979, 1 (1-2) :105-124
[6]   Optical and structural analysis of solar selective absorbing coatings based on AlSiOx:W cermets [J].
Dias, D. ;
Rebouta, L. ;
Costa, P. ;
Al-Rjoub, A. ;
Benelmeki, M. ;
Tavares, C. J. ;
Barradas, N. P. ;
Alves, E. ;
Santilli, P. ;
Pischow, K. .
SOLAR ENERGY, 2017, 150 :335-344
[7]   Computations of the optical properties of metal/insulator-composites for solar selective absorbers [J].
Farooq, M ;
Lee, ZH .
RENEWABLE ENERGY, 2003, 28 (09) :1421-1431
[8]   Parabolic-trough solar collectors and their applications [J].
Fernandez-Garcia, A. ;
Zarza, E. ;
Valenzuela, L. ;
Perez, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (07) :1695-1721
[9]   Modelling, optimisation and performance evaluation of a parabolic trough solar collector steam generation system [J].
Kalogirou, S ;
Lloyd, S ;
Ward, J .
SOLAR ENERGY, 1997, 60 (01) :49-59
[10]  
Kennedy C.E., 2002, Natl. Renew. Energy Lab