Space Saving by Dynamic Algebraization Based on Tree-Depth

被引:6
作者
Furer, Martin [1 ]
Yu, Huiwen [2 ,3 ]
机构
[1] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
[2] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA USA
[3] Penn State Univ, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Dynamic programming; Tree-depth; Tree decomposition; Space-efficient algorithms; Exponential time algorithms; Zeta transform; APPROXIMATION ALGORITHMS; TREEWIDTH; NUMBER;
D O I
10.1007/s00224-017-9751-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Dynamic programming is widely used for exact computations based on tree decompositions of graphs. However, the space complexity is usually exponential in the treewidth. We study the problem of designing efficient dynamic programming algorithms based on tree decompositions in polynomial space. We show how to use a tree decomposition and extend the algebraic techniques of Lokshtanov and Nederlof (In: 42nd ACM Symposium on Theory of Computing, pp. 321-330, 2010) such that a typical dynamic programming algorithm runs in time O*(2h), where h is the treedepth (Nesetril et al., Eur. J. Comb. 27( 6): 1022-1041, 2006) of a graph. In general, we assume that a tree decomposition of depth h is given. We apply our algorithm to the problem of counting perfect matchings on grids and show that it outperforms other polynomial-space solutions. We also apply the algorithm to other set covering and partitioning problems.
引用
收藏
页码:283 / 304
页数:22
相关论文
共 32 条
[1]  
Amir E., 2001, P 17 C UNCERTAINTY A, P7
[2]   Approximation Algorithms for Treewidth [J].
Amir, Eyal .
ALGORITHMICA, 2010, 56 (04) :448-479
[3]  
[Anonymous], 1994, TREEWIDTH COMPUTATIO
[4]  
Bjorklund A., 2012, P 23 ANN ACMSIAM S D, P914, DOI 10.1137/1.9781611973099.73
[5]   Fourier Meets Mobius: Fast Subset Convolution [J].
Bjorklund, Andreas ;
Husfeldt, Thore ;
Kaski, Petteri ;
Koivisto, Mikko .
STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, :67-74
[6]   Exact algorithms for exact satisfiability and number of perfect matchings [J].
Bjorklund, Andreas ;
Husfeldt, Thore .
ALGORITHMICA, 2008, 52 (02) :226-249
[7]  
Bodlaender H. L., 1989, 14 INT WORKSH GRAPH, P1
[8]   An O(ckn) 5-Approximation Algorithm for Treewidth [J].
Bodlaender, Hans L. ;
Drange, Pal Gronas ;
Dregi, Markus S. ;
Fomin, Fedor V. ;
Lokshtanov, Daniel ;
Pilipczuk, Michal .
2013 IEEE 54TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2013, :499-508
[9]  
Bodlaender HL, 2005, LECT NOTES COMPUT SC, V3381, P1
[10]  
BODLAENDER HL, 1988, LECT NOTES COMPUT SC, V317, P105