On the semiclassical spectrum of the Dirichlet-Pauli operator

被引:12
作者
Barbaroux, J-M [1 ]
Le Treust, L. [2 ]
Raymond, N. [3 ]
Stockmeyer, E. [4 ]
机构
[1] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Toulon, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
[3] Univ Angers, LAREMA, Fac Sci, Dept Math, F-49045 Angers 01, France
[4] Pontificia Univ Catolica Chile, Inst Fis, Vicuna Mackenna 4860, Santiago 7820436, Chile
关键词
Pauli operator; magnetic Cauchy-Riemann operators; semiclassical analysis; BOUNDARY-VALUE-PROBLEMS;
D O I
10.4171/JEMS/1085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set with Dirichlet conditions on the boundary. Assuming that the magnetic field is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide accurate asymptotic estimates involving Segal-Bargmann and Hardy spaces associated with the magnetic field.
引用
收藏
页码:3279 / 3321
页数:43
相关论文
共 17 条
[1]   A COUNTEREXAMPLE TO THE HOPF-OLEINIK LEMMA (ELLIPTIC CASE) [J].
Apushkinskaya, Darya E. ;
Nazarov, Alexander I. .
ANALYSIS & PDE, 2016, 9 (02) :439-458
[2]   WKB constructions in bidimensional magnetic wells [J].
Bonthonneau, Yannick ;
Raymond, Nicolas .
MATHEMATICAL RESEARCH LETTERS, 2020, 27 (03) :647-663
[3]  
Brezis H, 2011, UNIVERSITEXT, P1
[4]  
Duren P. L, 2000, THEORY HP SPACES
[5]   Estimates for the lowest eigenvalue of magnetic Laplacians [J].
Ekholm, Tomas ;
Kovarik, Hynek ;
Portmann, Fabian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) :330-346
[6]   Rayleigh-type isoperimetric inequality with a homogeneous magnetic field [J].
Erdos, L .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (03) :283-292
[7]  
EVANS LC, 1998, GRAD STUD MATH, V19
[8]  
Fournais S, 2010, PROG NONLINEAR DIFFE, V77, P1
[9]  
Gilbarg D., 1983, Grundlehren der Mathematischen Wissenschaften, V224, DOI DOI 10.1007/978-3-642-61798-0
[10]   On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator [J].
Halffer, Bernard ;
Sundqvist, Mikael Persson .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :138-153