Learning nonlinear state-space models using autoencoders

被引:59
|
作者
Masti, Daniele [1 ]
Bemporad, Alberto [1 ]
机构
[1] IMT Sch Adv Studies, Piazza San Francesco 19, Lucca, Italy
关键词
Identification methods; Model fitting; Identification for control; Neural networks; SYSTEM-IDENTIFICATION; REGRESSION; SELECTION; NETWORKS;
D O I
10.1016/j.automatica.2021.109666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a methodology for the identification of nonlinear state-space models from input/output data using machine-learning techniques based on autoencoders and neural networks. Our framework simultaneously identifies the nonlinear output and state-update maps of the model. After formulating the approach and providing guidelines for tuning the related hyper-parameters (including the model order), we show its capability in fitting nonlinear models on different nonlinear system identification benchmarks. Performance is assessed in terms of open-loop prediction on test data and of controlling the system via nonlinear model predictive control (MPC) based on the identified nonlinear state-space model. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [22] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750
  • [23] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [24] Alternative EM Algorithms for Nonlinear State-space Models
    Wahlstrom, Johan
    Jalden, Joakim
    Skog, Isaac
    Handel, Peter
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1260 - 1267
  • [25] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [26] Estimation methods for nonlinear state-space models in ecology
    Pedersen, M. W.
    Berg, C. W.
    Thygesen, U. H.
    Nielsen, A.
    Madsen, H.
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1394 - 1400
  • [27] Variational Bayesian learning of nonlinear hidden state-space models for model predictive control
    Raiko, Tapani
    Tornio, Matti
    NEUROCOMPUTING, 2009, 72 (16-18) : 3704 - 3712
  • [28] Latent Matters: Learning Deep State-Space Models
    Klushyn, Alexej
    Kurle, Richard
    Soelch, Maximilian
    Cseke, Botond
    van der Smagt, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [29] Separate Initialization of Dynamics and Nonlinearities in Nonlinear State-Space Models
    Marconato, Anna
    Sjoeberg, Jonas
    Suykens, Johan
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 2104 - 2108
  • [30] Further results on "System identification of nonlinear state-space models"
    Liu, Xin
    Lou, Sicheng
    Dai, Wei
    AUTOMATICA, 2023, 148