Learning nonlinear state-space models using autoencoders

被引:59
|
作者
Masti, Daniele [1 ]
Bemporad, Alberto [1 ]
机构
[1] IMT Sch Adv Studies, Piazza San Francesco 19, Lucca, Italy
关键词
Identification methods; Model fitting; Identification for control; Neural networks; SYSTEM-IDENTIFICATION; REGRESSION; SELECTION; NETWORKS;
D O I
10.1016/j.automatica.2021.109666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a methodology for the identification of nonlinear state-space models from input/output data using machine-learning techniques based on autoencoders and neural networks. Our framework simultaneously identifies the nonlinear output and state-update maps of the model. After formulating the approach and providing guidelines for tuning the related hyper-parameters (including the model order), we show its capability in fitting nonlinear models on different nonlinear system identification benchmarks. Performance is assessed in terms of open-loop prediction on test data and of controlling the system via nonlinear model predictive control (MPC) based on the identified nonlinear state-space model. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Learning nonlinear state-space models using deep autoencoders
    Masti, Daniele
    Bemporad, Alberto
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3862 - 3867
  • [2] Learning nonlinear state-space models for control
    Raiko, T
    Tornio, M
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 815 - 820
  • [3] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [4] Adaptive estimation of FCG using nonlinear state-space models
    Moussas, VC
    Katsikas, SK
    Lainiotis, DG
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (04) : 705 - 722
  • [5] Kernel-based learning of stable nonlinear state-space models
    Shakib, M. F.
    Toth, R.
    Pogromsky, A. Y.
    Pavlov, A.
    van de Wouw, N.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2897 - 2902
  • [6] An unsupervised ensemble learning method for nonlinear dynamic state-space models
    Valpola, H
    Karhunen, J
    NEURAL COMPUTATION, 2002, 14 (11) : 2647 - 2692
  • [7] An ensemble learning approach to nonlinear dynamic blind source separation using state-space models
    Valpola, H
    Honkela, A
    Karhunen, J
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 460 - 465
  • [8] Anomaly detection using state-space models and reinforcement learning
    Khazaeli, Shervin
    Nguyen, Luong Ha
    Goulet, James A.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2021, 28 (06):
  • [9] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [10] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170