Learning nonlinear state-space models using autoencoders

被引:59
作者
Masti, Daniele [1 ]
Bemporad, Alberto [1 ]
机构
[1] IMT Sch Adv Studies, Piazza San Francesco 19, Lucca, Italy
关键词
Identification methods; Model fitting; Identification for control; Neural networks; SYSTEM-IDENTIFICATION; REGRESSION; SELECTION; NETWORKS;
D O I
10.1016/j.automatica.2021.109666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a methodology for the identification of nonlinear state-space models from input/output data using machine-learning techniques based on autoencoders and neural networks. Our framework simultaneously identifies the nonlinear output and state-update maps of the model. After formulating the approach and providing guidelines for tuning the related hyper-parameters (including the model order), we show its capability in fitting nonlinear models on different nonlinear system identification benchmarks. Performance is assessed in terms of open-loop prediction on test data and of controlling the system via nonlinear model predictive control (MPC) based on the identified nonlinear state-space model. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 60 条
[1]  
[Anonymous], 2015, DEEP KALMAN FILTERS
[2]  
[Anonymous], 2016, TensorFlow: large-scale machine learning on heterogeneous distributed systems
[3]   NEURAL NETWORKS AND PRINCIPAL COMPONENT ANALYSIS - LEARNING FROM EXAMPLES WITHOUT LOCAL MINIMA [J].
BALDI, P ;
HORNIK, K .
NEURAL NETWORKS, 1989, 2 (01) :53-58
[4]  
Baram Y., 1984, MATH THEORY NETWORKS, P24
[5]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[6]   Global optimization via inverse distance weighting and radial basis functions [J].
Bemporad, Alberto .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (02) :571-595
[7]   Model predictive control design: New trends and tools [J].
Bemporad, Alberto .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :6678-6683
[8]   Piecewise affine regression via recursive multiple least squares and multicategory discrimination [J].
Breschi, Valentina ;
Piga, Dario ;
Bemporad, Alberto .
AUTOMATICA, 2016, 73 :155-162
[9]   Data-driven discovery of coordinates and governing equations [J].
Champion, Kathleen ;
Lusch, Bethany ;
Kutz, J. Nathan ;
Brunton, Steven L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) :22445-22451
[10]  
Chatzi E., 2020, ARXIV PREPRINT ARXIV