Non-Negative Solutions of the Heat Equation on a Graph and Eigenvalue Bounds

被引:1
作者
Weber, Andreas [1 ]
机构
[1] KIT, Inst Algebra & Geometrie, D-76128 Karlsruhe, Germany
关键词
Laplacian on a locally finite graph; non-negative solutions of the heat equation; eigenvalue bounds; MANIFOLDS;
D O I
10.1007/s00025-010-0022-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to give a lower bound for the decay of non-negative solutions for the heat equation on a locally finite graph. Furthermore, we estimate the eigenvalues of the Dirichlet-Laplacian from below.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 34 条
[31]   Auto-Weighted Multi-View Deep Non-Negative Matrix Factorization With Multi-Kernel Learning [J].
Yang, Xuanhao ;
Che, Hangjun ;
Leung, Man-Fai ;
Liu, Cheng ;
Wen, Shiping .
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2025, 11 :23-34
[32]   DIFFERENTIAL HARNACK ESTIMATES FOR POSITIVE SOLUTIONS TO HEAT EQUATION UNDER FINSLER-RICCI FLOW [J].
Lakzian, Sajjad .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 278 (02) :447-462
[33]   Pointwise gradient bounds for entire solutions of elliptic equations with non-standard growth conditions and general nonlinearities [J].
Cavaterra, Cecilia ;
Dipierro, Serena ;
Farina, Alberto ;
Gao, Zu ;
Valdinoci, Enrico .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 :435-475
[34]   Non-singular spacetimes with a negative cosmological constant: IV. Stationary black hole solutions with matter fields [J].
Chrusciel, Piotr T. ;
Delay, Erwann ;
Klinger, Paul .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (03)