The Distribution of the Length of the Longest Increasing Subsequence in Random Permutations of Arbitrary Multi-sets

被引:1
作者
Al-Meanazel, Ayat [1 ]
Johnson, Brad C. [2 ]
机构
[1] Al al Bayt Univ, Dept Math, POB 130040, Mafraq 25113, Jordan
[2] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
关键词
Markov chain; Impedding; Permutation; Increasing subsequence; Distribution; Arbitrary multi-sets;
D O I
10.1007/s11009-019-09753-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The distribution of the length of the longest increasing subsequence in random permutations of arbitrary multi-sets is obtained using the finite Markov chain imbedding technique (FMCI). A numerical examples are provided to aid in understanding.
引用
收藏
页码:1009 / 1021
页数:13
相关论文
共 14 条
[1]   DISTRIBUTIONS OF NUMBERS OF FAILURES AND SUCCESSES UNTIL THE 1ST CONSECUTIVE K SUCCESSES [J].
AKI, S ;
HIRANO, K .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1994, 46 (01) :193-202
[2]   Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem [J].
Aldous, D ;
Diaconis, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (04) :413-432
[3]   HAMMERSLEYS INTERACTING PARTICLE PROCESS AND LONGEST INCREASING SUBSEQUENCES [J].
ALDOUS, D ;
DIACONIS, P .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 103 (02) :199-213
[4]  
[Anonymous], 2000, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis
[5]   NATURAL SORTING OVER PERMUTATION SPACES [J].
BAER, RM ;
BROCK, P .
MATHEMATICS OF COMPUTATION, 1968, 22 (102) :385-&
[6]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[7]  
CHRYSSAPHINOU O, 1993, APPLICATIONS OF FIBONACCI NUMBERS, VOL 5, P103
[8]  
Erdos P, 1935, Compositio Math., V2, P463
[9]   On the Distribution of the Length of the Longest Increasing Subsequence in a Random Permutation [J].
Fu, James C. ;
Hsieh, Yu-Fei .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (02) :489-496
[10]   DISTRIBUTION-THEORY OF RUNS - A MARKOV-CHAIN APPROACH [J].
FU, JC ;
KOUTRAS, MV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (427) :1050-1058