Improved Peierls argument for high-dimensional Ising models

被引:24
作者
Lebowitz, JL [1 ]
Mazel, AE
机构
[1] Rutgers State Univ, Dept Math & Phys, New Brunswick, NJ 08903 USA
[2] Int Inst Earthquake Predict Theory & Theoret Geop, Moscow 113556, Russia
关键词
Ising model; Peierls contour; low-temperature expansion; high dimension;
D O I
10.1023/A:1023205826704
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the low-temperature expansion for the Ising model on Z(d), d greater than or equal to 2; with ferromagnetic nearest neighbor interactions in terms of Peierls contours. We prove that the expansion converges for all temperatures smaller than Cd(log d)(-1), which is the correct order in d.
引用
收藏
页码:1051 / 1059
页数:9
相关论文
共 9 条
[1]   PERCOLATION OF THE MINORITY SPINS IN HIGH-DIMENSIONAL ISING-MODELS [J].
AIZENMAN, M ;
BRICMONT, J ;
LEBOWITZ, JL .
JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (3-4) :859-865
[2]   A NOTE ON THE ISING-MODEL IN HIGH DIMENSIONS [J].
BRICMONT, J ;
KESTEN, H ;
LEBOWITZ, JL ;
SCHONMANN, RH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (04) :597-607
[3]  
Dobrushin RL., 1996, Topics Stat. Theo. Phys. Am. Math. Soc. Transl, V2, P59
[4]  
GRIFFITHS RB, 1967, COMMUN MATH PHYS, V6, P121
[5]   CLUSTER-EXPANSION FOR ABSTRACT POLYMER MODELS [J].
KOTECKY, R ;
PREISS, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (03) :491-498
[6]  
MAZEL AE, 1996, AM MATH SOC TRANSL, V171, P185
[7]   On Ising's model of ferromagnetism [J].
Peierls, R .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1936, 32 :477-481
[8]  
Ruelle D., 1969, Statistical mechanics. Rigorous results
[9]   REMARK ON DOBRUSHINS UNIQUENESS THEOREM [J].
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (02) :183-185