Deterministic Lateral Displacement as a Means to Enrich Large Cells for Tissue Engineering

被引:79
作者
Green, James V. [1 ]
Radisic, Milica [2 ,3 ]
Murthy, Shashi K. [1 ]
机构
[1] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
[2] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3G9, Canada
[3] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ENDOTHELIAL-CELLS; SMOOTH-MUSCLE; SIZE; ADHESION;
D O I
10.1021/ac9018395
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The enrichment or isolation of selected cell types from heterogeneous suspensions is required in the area of tissue engineering. State of the art techniques utilized for this separation include preplating and sieve-based approaches that have limited ranges of purity and variable yield. Here, we present a deterministic lateral displacement (DLD) microfluidic device that is capable of separating large epithelial cells (17.3 +/- 2.7 in diameter) from smaller fibroblast cells (13.7 +/- 3.0 mu m in diameter) as a potential alternative approach. The mixed suspension examined is intended to represent the content of digested rat cardiac tissue, which contains equal proportions of cardiomyocyte (17.0 +/- 4.0 mu m diameter) and nonmyocyte populations (12.0 +/- 3.0 mu m diameter). High purity separation (>97%) of the larger cell type is achieved with 90% yield in a rapid and single-pass process. The significance of this work lies in the recognition that DLD design principles can be applied for the microfluidic enrichment of large cells, up to the 40 mu m diameter level examined in this work.
引用
收藏
页码:9178 / 9182
页数:5
相关论文
共 23 条
[1]   Pulsatile perfusion bioreactor for cardiac tissue engineering [J].
Brown, Melissa A. ;
Iver, Rohin K. ;
Radisic, Milica .
BIOTECHNOLOGY PROGRESS, 2008, 24 (04) :907-920
[2]  
Carrier RL, 1999, BIOTECHNOL BIOENG, V64, P580, DOI 10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO
[3]  
2-X
[4]   A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array [J].
Chang, Sunghwan ;
Cho, Young-Ho .
LAB ON A CHIP, 2008, 8 (11) :1930-1936
[5]   A microfluidic device for practical label-free CD4+T cell counting of HIV-infected subjects [J].
Cheng, Xuanhong ;
Irimia, Daniel ;
Dixon, Meredith ;
Sekine, Kazuhiko ;
Demirci, Utkan ;
Zamir, Lee ;
Tompkins, Ronald G. ;
Rodriguez, William ;
Toner, Mehmet .
LAB ON A CHIP, 2007, 7 (02) :170-178
[6]  
Cooper R., 2007, Lab Chip
[7]   Cardiac tissue engineering - Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds [J].
Dar, A ;
Shachar, M ;
Leor, J ;
Cohen, S .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 80 (03) :305-312
[8]   Deterministic hydrodynamics: Taking blood apart [J].
Davis, John A. ;
Inglis, David W. ;
Morton, Keith J. ;
Lawrence, David A. ;
Huang, Lotien R. ;
Chou, Stephen Y. ;
Sturm, James C. ;
Austin, Robert H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (40) :14779-14784
[9]   Engineering myocardial tissue [J].
Eschenhagen, T ;
Zimmermann, WH .
CIRCULATION RESEARCH, 2005, 97 (12) :1220-1231
[10]   Effect of channel geometry on cell adhesion in microfluidic devices [J].
Green, James V. ;
Kniazeva, Tatiana ;
Abedi, Mehdi ;
Sokhey, Darshan S. ;
Taslim, Mohammad E. ;
Murthy, Shashi K. .
LAB ON A CHIP, 2009, 9 (05) :677-685