ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel

被引:59
作者
Lele, Aditya [1 ]
Kwon, Hyunguk [2 ]
Ganeshan, Karthik [1 ]
Xuan, Yuan [1 ]
van Duin, Adri C. T. [1 ,2 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
关键词
Molecular dynamics; ReaxFF reactive force field; Pyrolysis; Jet fuel; Bicyclic compounds; REACTIVE FORCE-FIELD; THERMAL MANAGEMENT; COMBUSTION; SIMULATIONS; MECHANISMS; OXIDATION; ENERGIES; KINETICS;
D O I
10.1016/j.fuel.2021.120724
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we investigate the initial fuel pyrolysis of four bicyclic compounds, which are potential alternative jet fuels, using ReaxFF force field based molecular dynamics (MD) simulations. These fuels can be separated into two categories, (a) cyclic alkanes attached through a 4-membered ring and (b) cyclic alkanes attached through a single C-C bond. We use a systematic procedure to investigate the reaction chemistry of all these fuel molecules. Global Arrhenius parameters, such as activation energies and pre-exponential factors, are calculated and used to analyze the overall decomposition kinetics of the fuels. The bicyclic fuels have a faster or comparable decomposition rate compared to some existing jet-fuels, such as JP-10. These fuels decompose through two main reaction classes. One pathway is the cleavage of the central bond leading to the formation of two cyclic radicals or species. Second class of reactions involves ring opening leading to the formation of small alkene molecules. The importance of these reactions in fuel decomposition process is found to be highly temperature dependent. This work demonstrates that ReaxFF can be used to investigate pyrolysis and combustion chemistry of existing or future fuels and to potentially contribute to the development of their chemical kinetic models without any a priori input and chemical intuition.
引用
收藏
页数:12
相关论文
共 43 条
[1]  
ADF TN. SCM, 2014, THEORETICAL CHEM
[2]   Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study [J].
Ashraf, Chowdhury ;
Shabnam, Sharmin ;
Jain, Abhishek ;
Xuan, Yuan ;
van Duin, Adri C. T. .
FUEL, 2019, 235 :194-207
[3]   Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics [J].
Ashraf, Chowdhury ;
van Duin, Adri C. T. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (05) :1051-1068
[4]   Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations [J].
Bal, Kristof M. ;
Neyts, Erik C. .
CHEMICAL SCIENCE, 2016, 7 (08) :5280-5286
[5]   Merging Metadynamics into Hyperdynamics: Accelerated Molecular Simulations Reaching Time Scales from Microseconds to Seconds [J].
Bal, Kristof M. ;
Neyts, Erik C. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (10) :4545-4554
[6]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]   Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences [J].
Bochevarov, Art D. ;
Harder, Edward ;
Hughes, Thomas F. ;
Greenwood, Jeremy R. ;
Braden, Dale A. ;
Philipp, Dean M. ;
Rinaldo, David ;
Halls, Mathew D. ;
Zhang, Jing ;
Friesner, Richard A. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (18) :2110-2142
[9]   Efficient First-Principles Calculation of the Quantum Kinetic Energy and Momentum Distribution of Nuclei [J].
Ceriotti, Michele ;
Manolopoulos, David E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[10]   Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat [J].
Ceriotti, Michele ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)