Parameter tuning in machine learning based on radiomics biomarkers of lung cancer

被引:2
作者
Luo, Yuan [1 ]
Li, Yifan [1 ]
Zhang, Yuwei [1 ]
Zhang, Jianwei [2 ]
Liang, Meng [1 ]
Jiang, Lin [1 ]
Guo, Li [1 ]
机构
[1] Tianjin Med Univ, Sch Med Imaging, Tianjin 300203, Peoples R China
[2] Tianjin Baodi Hosp, Dept Radiol, Tianjin, Peoples R China
关键词
Lung neoplasms; machine learning; radiomics; parameter analysis; lung nodule classification; FEATURES; ADENOCARCINOMA; NODULES; IMAGES;
D O I
10.3233/XST-211096
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
BACKGROUND: Lung cancer is one of the most common cancers, and early diagnosis and intervention can improve cancer cure rate. OBJECTIVE: To improve predictive performance of radiomics features for lung cancer by tuning the machine learning model parameters. METHODS: Using a dataset involving 263 cases (125 benign and 138 malignant) acquired from our hospital, each classifier model is trained and tested using 237 and 26 cases, respectively. We initially extract 867 radiomics features of CT images for model development and then test 10 feature selections and 7 models to determine the best method. We further tune the parameter of the final model to reach the best performance. The adjusted final model is then validated using 224 cases acquired from Lung Image Database Consortium (LIDC) dataset (64 benign and 160 malignant) with the same set of selected radiomics features. RESULTS: During model development, the feature selection via concave minimization method showthe best performance of area under ROC curve (AUC=0.765), followed by l0-norm regularization (AUC=0.741) and Fisher discrimination criterion (AUC=0.734). Support vector machine (SVM) and random forest (RF) are the top two machine learning algorithms showing the best performance (AUC=0.765 and 0.734, respectively), using by the default parameter. After parameter tuning, SVM with linear kernel achieves the best performance (AUC=0.837), whereas the best tuned RF with the number of trees is 510 and yields a slightly lower performance (AUC=0.775) in 26 test samples data. During model validation, the SVM and RF models yield AUC=0.78 and 0.77, respectively. CONCLUSION: Appropriate quantitative radiomics features and accurate parameters can improve the model's performance to predict lung cancer.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 36 条
  • [1] [Anonymous], FEATURE SELECTION LI
  • [2] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [3] Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy ct images
    Bae, Jung Min
    Jeong, Ji Yun
    Lee, Ho Yun
    Sohn, Insuk
    Kim, Hye Seung
    Son, Ji Ye
    Kwon, O. Jung
    Choi, Joon Young
    Lee, Kyung Soo
    Shim, Young Mog
    [J]. ONCOTARGET, 2017, 8 (01) : 523 - 535
  • [4] Radiomics and artificial intelligence in lung cancer screening
    Binczyk, Franciszek
    Prazuch, Wojciech
    Bozek, Pawel
    Polanska, Joanna
    [J]. TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (02) : 1186 - 1199
  • [5] Radiogenomics: bridging imaging and genomics
    Bodalal, Zuhir
    Trebeschi, Stefano
    Nguyen-Kim, Thi Dan Linh
    Schats, Winnie
    Beets-Tan, Regina
    [J]. ABDOMINAL RADIOLOGY, 2019, 44 (06) : 1960 - 1984
  • [6] A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma
    Chang, Cheng
    Sun, Xiaoyan
    Wang, Gang
    Yu, Hong
    Zhao, Wenlu
    Ge, Yaqiong
    Duan, Shaofeng
    Qian, Xiaohua
    Wang, Rui
    Lei, Bei
    Wang, Lihua
    Liu, Liu
    Ruan, Maomei
    Yan, Hui
    Liu, Ciyi
    Chen, Jie
    Xie, Wenhui
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [7] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [8] Predicting malignant potential of subsolid nodules: can radiomics preempt longitudinal follow up CT?
    Digumarthy, Subba R.
    Padole, Atul M.
    Rastogi, Shivam
    Price, Melissa
    Mooradian, Meghan J.
    Sequist, Lecia V.
    Kalra, Mannudeep K.
    [J]. CANCER IMAGING, 2019, 19 (1):
  • [9] Differentiating minimally invasive and invasive adenocarcinomas in patients with solitary sub-solid pulmonary nodules with a radiomics nomogram
    Feng, B.
    Chen, X.
    Chen, Y.
    Li, Z.
    Hao, Y.
    Zhang, C.
    Li, R.
    Liao, Y.
    Zhang, X.
    Huang, Y.
    Long, W.
    [J]. CLINICAL RADIOLOGY, 2019, 74 (07) : 570.e1 - 570.e11
  • [10] Radiomics: Images Are More than Pictures, They Are Data
    Gillies, Robert J.
    Kinahan, Paul E.
    Hricak, Hedvig
    [J]. RADIOLOGY, 2016, 278 (02) : 563 - 577