Long time behavior for a nonlinear fractional model

被引:22
作者
Furati, Khaled M. [1 ]
Tatar, Nasser-Eddine [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
关键词
fractional differential equation; Riemann-Liouville integral; singular kernel; weighted Cauchy-type problem;
D O I
10.1016/j.jmaa.2006.10.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior for solutions of a weighted Cauchy-type nonlinear fractional problem is investigated. We find bounds for solutions on infinite time intervals and also provide sufficient conditions assuring decay to zero. This work improves earlier results by the same authors. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1993, DISSERTATIONES MATH
[3]  
AZBELEV N, 1995, ADV SER MATH SCI ENG
[4]  
BURTON TA, 1982, MATH SCI ENG, V167
[5]  
CORDUNEANU C, 2002, STABILITY CONTROL TH, V16
[6]   Power-type estimates for a nonlinear fractional differential equation [J].
Furati, KM ;
Tatar, NE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (06) :1025-1036
[7]  
Furati KM, 2004, J Fract Calc, V26, P43
[8]  
Furati KM., 2005, Journal of Fractional Calculus, V28, P23
[9]  
Gripenberg G., 1990, Volterra Integral and Functional Equations, V34
[10]  
Guo D. J., 1996, NONLINEAR INTEGRAL E