NeBcon: protein contact map prediction using neural network training coupled with naiive Bayes classifiers
被引:57
作者:
He, Baoji
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USAChinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
He, Baoji
[1
,2
,3
]
Mortuza, S. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USAChinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
Mortuza, S. M.
[3
]
Wang, Yanting
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
Wang, Yanting
[1
,2
]
Shen, Hong-Bin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R ChinaChinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
Shen, Hong-Bin
[3
,4
]
Zhang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USAChinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
Zhang, Yang
[3
,5
]
机构:
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[5] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
Motivation: Recent CASP experiments have witnessed exciting progress on folding large-size non-humongous proteins with the assistance of co-evolution based contact predictions. The success is however anecdotal due to the requirement of the contact prediction methods for the high volume of sequence homologs that are not available to most of the non-humongous protein targets. Development of efficient methods that can generate balanced and reliable contact maps for different type of protein targets is essential to enhance the success rate of the ab initio protein structure prediction. Results: We developed a new pipeline, NeBcon, which uses the naiive Bayes classifier (NBC) theorem to combine eight state of the art contact methods that are built from co-evolution and machine learning approaches. The posterior probabilities of the NBC model are then trained with intrinsic structural features through neural network learning for the final contact map prediction. NeBcon was tested on 98 non-redundant proteins, which improves the accuracy of the best co-evolution based meta-server predictor by 22%; the magnitude of the improvement increases to 45% for the hard targets that lack sequence and structural homologs in the databases. Detailed data analysis showed that the major contribution to the improvement is due to the optimized NBC combination of the complementary information from both co-evolution and machine learning predictions. The neural network training also helps to improve the coupling of the NBC posterior probability and the intrinsic structural features, which were found particularly important for the proteins that do not have sufficient number of homologous sequences to derive reliable co-evolution profiles.
机构:
Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
Univ Washington, Dept Biochem, Seattle, WA 98195 USAUniv Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
Kamisetty, Hetunandan
论文数: 引用数:
h-index:
机构:
Ovchinnikov, Sergey
Baker, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
Univ Washington, Dept Biochem, Seattle, WA 98195 USAUniv Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
机构:
Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
Univ Washington, Dept Biochem, Seattle, WA 98195 USAUniv Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
Kamisetty, Hetunandan
论文数: 引用数:
h-index:
机构:
Ovchinnikov, Sergey
Baker, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
Univ Washington, Dept Biochem, Seattle, WA 98195 USAUniv Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA