A function dataset for benchmarking in sensitivity analysis

被引:6
作者
Azzini, Ivano [1 ]
Rosati, Rossana [1 ]
机构
[1] European Commiss, Joint Res Ctr JRC, Ispra, Italy
来源
DATA IN BRIEF | 2022年 / 42卷
关键词
Function dataset; Sensitivity analysis benchmarking; Sobol' indices; Analytical sensitivity indices; Main effect index; DESIGN;
D O I
10.1016/j.dib.2022.108071
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper a dataset of functions has been described which includes analytical values of Sobol' first-order and total-order indices. This unique collection represents a valid benchmark to evaluate sensitivity analysis methodologies and allows the comparison of different technique outcomes. The benchmarking dataset was introduced in Azzini and Rosati following a practice already consolidated in many fields of research such as machine learning or Statistics. The dataset should be considered as an initial proposal open to being easily updated, extended, or modified by new mathematical functions or models in the future. (C) 2022 The Authors. Published by Elsevier Inc.
引用
收藏
页数:7
相关论文
共 14 条
  • [1] Variance decomposition and global sensitivity for structural systems
    Arwade, Sanjay R.
    Moradi, Mohammadreza
    Louhghalam, Arghavan
    [J]. ENGINEERING STRUCTURES, 2010, 32 (01) : 1 - 10
  • [2] Sobol' main effect index: an Innovative Algorithm (IA) using Dynamic Adaptive Variances
    Azzini, Ivano
    Rosati, Rossana
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 213
  • [3] Transformations and invariance in the sensitivity analysis of computer experiments
    Borgonovo, E.
    Tarantola, S.
    Plischke, E.
    Morris, M. D.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (05) : 925 - 947
  • [4] Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty
    Chen, W
    Jin, RC
    Sudjianto, A
    [J]. JOURNAL OF MECHANICAL DESIGN, 2005, 127 (05) : 875 - 886
  • [5] Local Polynomial Estimation for Sensitivity Analysis on Models With Correlated Inputs
    Da Veiga, Sebastien
    Wahl, Francois
    Gamboa, Fabrice
    [J]. TECHNOMETRICS, 2009, 51 (04) : 452 - 463
  • [6] Monte Carlo evaluation of derivative-based global sensitivity measures
    Kucherenko, S.
    Rodriguez-Fernandez, M.
    Pantelides, C.
    Shah, N.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (07) : 1135 - 1148
  • [7] Derivative-Based Global Sensitivity Measures and Their Link with Sobol' Sensitivity Indices
    Kucherenko, Sergei
    Song, Shugfang
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 455 - 469
  • [8] The identification of model effective dimensions using global sensitivity analysis
    Kucherenko, Sergei
    Feil, Balazs
    Shah, Nilay
    Mauntz, Wolfgang
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (04) : 440 - 449
  • [9] Reuter U., 2008, GLOBAL SENSITIVITY A
  • [10] Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
    Saltelli, Andrea
    Annoni, Paola
    Azzini, Ivano
    Campolongo, Francesca
    Ratto, Marco
    Tarantola, Stefano
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (02) : 259 - 270