Clustering of Nonergodic Eigenstates in Quantum Spin Glasses

被引:39
作者
Baldwin, C. L. [1 ,2 ]
Laumann, C. R. [1 ]
Pal, A. [3 ]
Scardicchio, A. [4 ,5 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[4] Abdus Salam ICTP Trieste, Str Costiera 11, I-34151 Trieste, Italy
[5] Ist Nazl Fis Nucl, Sezione Trieste, Via Valerio 2, I-34127 Trieste, Italy
基金
美国国家科学基金会;
关键词
MANY-BODY LOCALIZATION; SOLVABLE MODEL; TRANSITION; SYSTEM; PHASE; INSULATOR;
D O I
10.1103/PhysRevLett.118.127201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two primary categories for eigenstate phases of matter at a finite temperature are many-body localization (MBL) and the eigenstate thermalization hypothesis (ETH). We show that, in the paradigmatic quantum p-spin models of the spin-glass theory, eigenstates violate the ETH yet are not MBL either. A mobility edge, which we locate using the forward-scattering approximation and replica techniques, separates the nonergodic phase at a small transverse field from an ergodic phase at a large transverse field. The nonergodic phase is also bounded from above in temperature, by a transition in configuration-space statistics reminiscent of the clustering transition in the spin-glass theory. We show that the nonergodic eigenstates are organized in clusters which exhibit distinct magnetization patterns, as characterized by an eigenstate variant of the Edwards-Anderson order parameter.
引用
收藏
页数:6
相关论文
共 56 条
[41]   Quantum phase transition in spin glasses with multi-spin interactions [J].
Nieuwenhuizen, TM ;
Ritort, F .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 250 (1-4) :8-45
[42]   Localization of interacting fermions at high temperature [J].
Oganesyan, Vadim ;
Huse, David A. .
PHYSICAL REVIEW B, 2007, 75 (15)
[43]   Evidence for a Finite-Temperature Insulator [J].
Ovadia, M. ;
Kalok, D. ;
Tamir, I. ;
Mitra, S. ;
Sacepe, B. ;
Shahar, D. .
SCIENTIFIC REPORTS, 2015, 5
[44]   Many-body localization phase transition [J].
Pal, Arijeet ;
Huse, David A. .
PHYSICAL REVIEW B, 2010, 82 (17)
[45]   INFINITE NUMBER OF ORDER PARAMETERS FOR SPIN-GLASSES [J].
PARISI, G .
PHYSICAL REVIEW LETTERS, 1979, 43 (23) :1754-1756
[46]   Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions [J].
Pietracaprina, Francesca ;
Ros, Valentina ;
Scardicchio, Antonello .
PHYSICAL REVIEW B, 2016, 93 (05)
[47]   Thermalization and its mechanism for generic isolated quantum systems [J].
Rigol, Marcos ;
Dunjko, Vanja ;
Olshanii, Maxim .
NATURE, 2008, 452 (7189) :854-858
[48]   Observation of many-body localization of interacting fermions in a quasirandom optical lattice [J].
Schreiber, Michael ;
Hodgman, Sean S. ;
Bordia, Pranjal ;
Lueschen, Henrik P. ;
Fischer, Mark H. ;
Vosk, Ronen ;
Altman, Ehud ;
Schneider, Ulrich ;
Bloch, Immanuel .
SCIENCE, 2015, 349 (6250) :842-845
[49]   Local Conservation Laws and the Structure of the Many-Body Localized States [J].
Serbyn, Maksym ;
Papic, Z. ;
Abanin, Dmitry A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (12)
[50]   SOLVABLE MODEL OF A SPIN-GLASS [J].
SHERRINGTON, D ;
KIRKPATRICK, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (26) :1792-1796