Quantification of Non-Specific Binding of Magnetic Micro- and Nanoparticles Using Cell Tracking Velocimetry: Implication for Magnetic Cell Separation and Detection

被引:39
作者
Chalmers, J. J. [1 ]
Xiong, Y. [1 ]
Jin, X. [1 ,2 ]
Shao, M. [1 ]
Tong, X. [1 ]
Farag, S. [3 ]
Zborowski, M. [2 ]
机构
[1] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[2] Cleveland Clin Fdn, Dept Biomed Engn, Cleveland, OH 44195 USA
[3] Indiana Univ, Sch Med, Blood & Bone Marrow Transplantat Program, Div Hematol Oncol,Dept Internal Med, Indianapolis, IN USA
基金
美国国家科学基金会;
关键词
magnetic cell separation; magnetic nanoparticles; MACS; magnetophoretic mobility; non-specific binding; nanoparticle uptake; SUSCEPTIBILITY; ENRICHMENT; MOBILITY;
D O I
10.1002/bit.22635
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The maturation of magnetic cell separation technology places increasing demands on magnetic cell separation performance. While a number of factors can cause sub-optimal performance, one of the major challenges can be non-specific binding of magnetic nano-or micro-particles to non-targeted cells. Depending on the type of separation, this non-specific binding can have a negative effect on the final purity, the recovery of the targeted cells, or both. In this work, we quantitatively demonstrate that nonspecific binding of magnetic nanoparticles can impart a magnetization to cells such that these cells can be retained in a separation column and thus negatively impact the purity of the final product and the recovery of the desired cells. Through experimental data and theoretical arguments, we demonstrate that the number of MACS magnetic particles needed to impart a magnetization that is sufficient to cause non-targeted cells to be retained in the column to be on the order of 500-1,000 nanoparticles. This number of non-specifically bound particles was demonstrated experimentally with an instrument, cell tracking velocimeter, CTV, and it is demonstrated that the sensitivity of the CTV instrument for Fe atoms contained in magnetic nanoparticles on the order of 1 x 10(-15) g/mL of Fe. Biotechnol. Bioeng. 2010; 105: 1078-1093. (C) 2009 Wiley Periodicals, Inc.
引用
收藏
页码:1078 / 1093
页数:16
相关论文
共 21 条
[1]  
CASTILLO J, 1994, ANN I STAT MATH, V46, P57
[2]   An instrument to determine the magnetophoretic mobility of labeled, biological cells and paramagnetic particles [J].
Chalmers, JJ ;
Zhao, Y ;
Nakamura, M ;
Melnik, K ;
Lasky, L ;
Moore, L ;
Zborowski, M .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 194 (1-3) :231-241
[3]  
Chalmers JJ, 1999, BIOTECHNOL BIOENG, V64, P509, DOI 10.1002/(SICI)1097-0290(19990905)64:5<509::AID-BIT1>3.0.CO
[4]  
2-Z
[5]  
Comella K, 2001, CYTOMETRY, V45, P285, DOI 10.1002/1097-0320(20011201)45:4<285::AID-CYTO10018>3.0.CO
[6]  
2-W
[7]   Nanocarriers' entry into the cell: relevance to drug delivery [J].
Hillaireau, Herve ;
Couvreur, Patrick .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2009, 66 (17) :2873-2896
[8]   Differences in magnetically induced motion of diamagnetic, paramagnetic, and superparamagnetic microparticles detected by cell tracking velocimetry [J].
Jin, Xiaoxia ;
Zhao, Yang ;
Richardson, Aaron ;
Moore, Lee ;
Williams, P. Stephen ;
Zborowski, Maciej ;
Chalmers, Jeffrey J. .
ANALYST, 2008, 133 (12) :1767-1775
[9]   Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis [J].
Jing, Ying ;
Mal, Niladri ;
Williams, P. Stephen ;
Mayorga, Maritza ;
Penn, Marc S. ;
Chalmers, Jeffrey J. ;
Zborowski, Maciej .
FASEB JOURNAL, 2008, 22 (12) :4239-4247
[10]   Comparison of two immunomagnetic separation technologies to deplete T cells from human blood samples [J].
Lara, O ;
Tong, XD ;
Zborowski, M ;
Farag, SS ;
Chalmers, JJ .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 94 (01) :66-80