Computing low-rank approximations of the Frechet derivative of a matrix function using Krylov subspace methods

被引:12
|
作者
Kandolf, Peter [1 ]
Koskela, Antti [2 ]
Relton, Samuel D. [3 ]
Schweitzer, Marcel [4 ]
机构
[1] Univ Innsbruck, Zentraler Informat Dienst, Zentrale Syst, Innsbruck, Austria
[2] Univ Helsinki, Dept Comp Sci, Helsinki, Finland
[3] Univ Leeds, Leeds Inst Hlth Sci, Leeds, W Yorkshire, England
[4] Heinrich Heine Univ Dusseldorf, Math Nat Wissensch Fak, Univ Str 1, D-40225 Dusseldorf, Germany
关键词
Frechet derivative; Krylov subspace; matrix exponential; matrix function; Stieltjes function; AHEAD LANCZOS-ALGORITHM; EXPONENTIAL INTEGRATORS; ITERATIVE METHOD; SIGN-FUNCTION; IMPLEMENTATION; CONVERGENCE; ACTYS-1-GO; OPERATOR; VARIANT;
D O I
10.1002/nla.2401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Frechet derivative Lf(A,E) of the matrix function f(A) plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low-rank approximations of Lf(A,E) when the direction term E is of rank one (which can easily be extended to general low rank). We analyze the convergence of the resulting methods both in the Hermitian and non-Hermitian case. In a number of numerical tests, both including matrices from benchmark collections and from real-world applications, we demonstrate and compare the accuracy and efficiency of the proposed methods.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Randomized block Krylov subspace algorithms for low-rank quaternion matrix approximations
    Li, Chaoqian
    Liu, Yonghe
    Wu, Fengsheng
    Che, Maolin
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 687 - 717
  • [2] Randomized block Krylov subspace algorithms for low-rank quaternion matrix approximations
    Chaoqian Li
    Yonghe Liu
    Fengsheng Wu
    Maolin Che
    Numerical Algorithms, 2024, 96 : 687 - 717
  • [3] LOW-RANK TENSOR KRYLOV SUBSPACE METHODS FOR PARAMETRIZED LINEAR SYSTEMS
    Kressner, Daniel
    Tobler, Christine
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) : 1288 - 1316
  • [4] Subspace-Orbit Randomized Decomposition for Low-Rank Matrix Approximations
    Kaloorazi, Maboud Farzaneh
    de lamare, Rodrigo C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (16) : 4409 - 4424
  • [5] Computing Optimal Low-Rank Matrix Approximations for Image Processing
    Chung, Julianne
    Chung, Matthias
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 670 - 674
  • [6] KRYLOV METHODS FOR LOW-RANK REGULARIZATION
    Gazzola, Silvia
    Meng, Chang
    Nagy, James G.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) : 1477 - 1504
  • [7] Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
    Massey, Pedro
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 112 - 149
  • [8] LOW-RANK UPDATES OF MATRIX FUNCTIONS II: RATIONAL KRYLOV METHODS
    Beckermann, Bernhard
    Cortinovis, Alice
    Kressner, Daniel
    Schweitzer, Marcel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1325 - 1347
  • [9] Two Rank Approximations for Low-Rank Based Subspace Clustering
    Xu, Fei
    Peng, Chong
    Hu, Yunhong
    He, Guoping
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [10] Access-averse Framework for Computing Low-rank Matrix Approximations
    Yamazaki, Ichitaro
    Mary, Theo
    Kurzak, Jakub
    Tomov, Stanimire
    Dongarra, Jack
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,