A Highly Linear Neuromorphic Synaptic Device Based on Regulated Charge Trap/Detrap

被引:20
作者
Choi, Jong-Moon [1 ]
Park, Eun-Je [1 ]
Woo, Je-Joong [1 ]
Kwon, Kee-Won [1 ]
机构
[1] Sungkyunkwan Univ, Coll Informat & Commun Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Linearity; Programming; Tunneling; Capacitance; Erbium; Neuromorphics; Nonvolatile memory; CMOS-compatible; linear programming; charge trap; floating gate; synaptic device; incremental step pulse programming (ISPP);
D O I
10.1109/LED.2019.2943113
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we present highly linear potentiation/depression behaviors of a neuromorphic synaptic device made of CMOS-compatible floating gate (FG) cells. The kinetics of the charge trap/detrap mechanism under various pulse shapes are analyzed to design a simple 2C-4T FG cell with a modulated column write driver for embedded incremental step pulse programming (ISPP) via analog feedback. Utilizing real-time ISPP, the linearity and symmetry of the weight update were significantly improved due to the content-aware programming strength. Moreover, the proposed circuit technique provides flexibility regarding the size of the program/erase steps in addition to the superior linearity. The proposed FG cells with peripheral circuits are fabricated using 180nm CMOS technology and exhibited a differential non-linearity (DNL) less than 0.946 least significant bit (LSB) with 100 weight states. The excellent linearity remains unchanged even when the directions of potentiation /depression are reversed throughout the entire range.
引用
收藏
页码:1848 / 1851
页数:4
相关论文
共 15 条
[1]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[2]  
[Anonymous], 2018, IEEE INT ELECT DEVIC, DOI DOI 10.1016/J.MICRES.2018.06.008
[3]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[4]  
Chang S. De Ted, 1998, U.S.Patent, Patent No. [5761121A, 5761121]
[5]   A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation [J].
Gong, Nanbo ;
Ma, Tso-Ping .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (01) :15-18
[6]   Unsupervised Learning Using Charge-Trap Transistors [J].
Gu, Xuefeng ;
Iyer, Subramanian S. .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (09) :1204-1207
[7]  
Jerry Matthew, 2017, 2017 IEEE International Electron Devices Meeting (IEDM), P621, DOI 10.1109/IEDM.2017.8268338
[8]   Charge Trap Transistor (CTT): An Embedded Fully Logic-Compatible Multiple-Time Programmable Non-Volatile Memory Element for High-k-Metal-Gate CMOS Technologies [J].
Khan, Faraz ;
Cartier, Eduard ;
Woo, Jason C. S. ;
Iyer, Subramanian S. .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (01) :44-47
[9]  
Kim M., 2018, IEEE INT ELECT DEVIC
[10]   A low power CMOS compatible embedded EEPROM for passive RFID tag [J].
Lee, Kyoung-Su ;
Chun, Jung-Hoon ;
Kwon, Kee-Won .
MICROELECTRONICS JOURNAL, 2010, 41 (10) :662-668