Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds II

被引:16
作者
Neves, Andre [1 ]
Tian, Gang [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2010年 / 641卷
基金
美国国家科学基金会;
关键词
MASS; MANIFOLDS;
D O I
10.1515/CRELLE.2010.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper, the authors showed that metrics which are asymptotic to Anti-de Sitter-Schwarzschild metrics with positive mass admit a unique foliation by stable spheres with constant mean curvature. In this paper we extend that result to all asymptotically hyperbolic metrics for which the trace of the mass term is positive. We do this by combining the Kazdan-Warner obstructions with a theorem due to De Lellis and Muller.
引用
收藏
页码:69 / 93
页数:25
相关论文
共 11 条
[1]   The mass of asymptotically hyperbolic Riemannian manifolds [J].
Chrusciel, PT ;
Herzlich, M .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (02) :231-264
[2]  
De Lellis C, 2005, J DIFFER GEOM, V69, P75
[3]   The inverse mean curvature flow and the Riemannian Penrose Inequality [J].
Huisken, G ;
Ilmanen, T .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 59 (03) :353-437
[4]   Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature [J].
Huisken, G ;
Yau, ST .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :281-311
[5]  
Huisken G., 1999, Lecture Notes in Mathematics, V1713, P45, DOI [10.1007/BFb0092669, 10.1007, DOI 10.1007/BFB0092669]
[6]   EXISTENCE AND CONFORMAL DEFORMATION OF METRICS WITH PRESCRIBED GAUSSIAN AND SCALAR CURVATURES [J].
KAZDAN, JL ;
WARNER, FW .
ANNALS OF MATHEMATICS, 1975, 101 (02) :317-331
[7]  
LI P., 1993, LECT NOTES SER, V6
[8]  
Metzger J, 2007, J DIFFER GEOM, V77, P201
[9]  
NEVES A, ARXIV07114335
[10]  
NEVES A, ARXIVMATH0610767