Statistical calculations of nuclear fragment distributions

被引:19
作者
Pratt, S [1 ]
Das Gupta, S
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
来源
PHYSICAL REVIEW C | 2000年 / 62卷 / 04期
关键词
D O I
10.1103/PhysRevC.62.044603
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The recursive techniques developed by Mekjian and collaborators for exact calculations of canonical partition functions of fragmenting systems are extended to allow the determination of fragment multiplicity distributions. The fragment multiplicity distribution is shown to become strongly super-Poissonian at the critical temperature. This behavior is shown to be highly sensitive to Coulomb effects and to whether energy is strictly conserved (the microcanonical ensemble). Additionally, a method is presented for generating events from the partition functions, which also permits the inclusion of hard-sphere interactions between fragments.
引用
收藏
页数:13
相关论文
共 38 条
[1]   THE NUCLEAR LATTICE MODEL OF PROTON-INDUCED MULTI-FRAGMENTATION REACTIONS [J].
BAUER, W ;
POST, U ;
DEAN, DR ;
MOSEL, U .
NUCLEAR PHYSICS A, 1986, 452 (04) :699-722
[2]   EXTRACTION OF SIGNALS OF A PHASE-TRANSITION FROM NUCLEAR MULTIFRAGMENTATION [J].
BAUER, W .
PHYSICAL REVIEW C, 1988, 38 (03) :1297-1303
[3]   PREEQUILIBRIUM PARTICLE-EMISSION AND CRITICAL EXPONENT ANALYSIS [J].
BAUER, W ;
BOTVINA, A .
PHYSICAL REVIEW C, 1995, 52 (04) :R1760-R1763
[4]   NEW APPROACH TO FRAGMENTATION REACTIONS - THE NUCLEAR LATTICE MODEL [J].
BAUER, W ;
DEAN, DR ;
MOSEL, U ;
POST, U .
PHYSICS LETTERS B, 1985, 150 (1-3) :53-56
[5]  
BAUER W, 1998, NUCLTH9809024
[6]   Nuclear properties at finite temperature in a two-component statistical model [J].
Bhattacharyya, P ;
Das Gupta, S ;
Mekjian, AZ .
PHYSICAL REVIEW C, 1999, 60 (05) :7
[7]  
Bohr A., 1998, NUCL STRUCTURE, V1
[8]   Isotopic and microcanonical temperatures in nuclear multifragmentation [J].
Bondorf, JP ;
Botvina, AS ;
Mishustin, IN .
PHYSICAL REVIEW C, 1998, 58 (01) :R27-R30
[9]   STATISTICAL MULTIFRAGMENTATION OF NUCLEI [J].
BONDORF, JP ;
BOTVINA, AS ;
ILJINOV, AS ;
MISHUSTIN, IN ;
SNEPPEN, K .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 257 (03) :133-221
[10]   DYNAMIC CLUSTERIZATION IN THE PRESENCE OF INSTABILITIES [J].
BURGIO, GF ;
CHOMAZ, P ;
RANDRUP, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (06) :885-888