Finite element analysis of grain-by-grain deformation by crystal plasticity with couple stress

被引:24
作者
Kim, HK
Oh, SI
机构
[1] Seoul Natl Univ, Inst Adv Machinery & Design, Kwanak Gu, Seoul 151742, South Korea
[2] Seoul Natl Univ, Sch Mech & Aerosp Engn, Kwanak Gu, Seoul 151742, South Korea
关键词
grain boundaries; crystal plasticity; constitutive behavior; finite elements; couple stress;
D O I
10.1016/S0749-6419(02)00110-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Rigid-plastic crystal plasticity with the rate-sensitive constitutive behavior of a slip system has been formulated within the framework of a two-dimensional finite element method to predict the grain-by-grain deformation of single- and polycrystalline FCC metals. For that purpose, individual grains are represented by several numbers of finite elements to describe the sub-grain deformation behavior, and couple stress has been introduced into the equilibrium equation to be able to describe the size effect as well as to prevent mesh-dependent predictions. A modified virtual work-rate principle with an approximate interface constraint has been suggested to use a C-0-continuous element in the finite element implementation, and the couple stress work-rate has been formulated on the basis of an assumed constitutive behavior. Simulated plane-strain compressions of a single crystal cube show that the shearing and the deformation load are closely related to the imbedded lattice orientation of the crystal grain, and that the sub-grain deformation and the load magnitude can be controlled by the couple stress hardening. It is also confirmed that almost the same predictions are obtained for different mesh systems by considering the couple stress hardening. Simulated plane-strain compressions of a bi-crystal show considerably curved grain-by-grain surface profiles after large reduction for several combinations of the imbedded lattice orientation. The high couple stress hardening predicted around grain boundaries is supposed to be related to the grain size effect. It is also supposed that consideration of couple stress is necessary to predict the sub-grain or the grain-by-grain deformation, and the couple stress hardening may be used to describe the state of microstructures in grain. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1245 / 1270
页数:26
相关论文
共 38 条
[1]   Lattice incompatibility and a gradient theory of crystal plasticity [J].
Acharya, A ;
Bassani, JL .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (08) :1565-1595
[2]   A computational procedure for rate-independent crystal plasticity [J].
Anand, L ;
Kothari, M .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1996, 44 (04) :525-558
[3]   THE PROCESS OF SHEAR-BAND FORMATION IN PLANE-STRAIN COMPRESSION OF FCC METALS - EFFECTS OF CRYSTALLOGRAPHIC TEXTURE [J].
ANAND, L ;
KALIDINDI, SR .
MECHANICS OF MATERIALS, 1994, 17 (2-3) :223-243
[4]   OVERVIEW .42. TEXTURE DEVELOPMENT AND STRAIN-HARDENING IN RATE DEPENDENT POLYCRYSTALS [J].
ASARO, RJ ;
NEEDLEMAN, A .
ACTA METALLURGICA, 1985, 33 (06) :923-953
[5]   MICROMECHANICS OF CRYSTALS AND POLYCRYSTALS [J].
ASARO, RJ .
ADVANCES IN APPLIED MECHANICS, 1983, 23 :1-115
[6]   Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: FE model [J].
Barbe, F ;
Decker, L ;
Jeulin, D ;
Cailletaud, G .
INTERNATIONAL JOURNAL OF PLASTICITY, 2001, 17 (04) :513-536
[7]   Intergranular and intragranular behavior of polycrystalline aggregates. Part 2: Results [J].
Barbe, F ;
Forest, S ;
Cailletaud, G .
INTERNATIONAL JOURNAL OF PLASTICITY, 2001, 17 (04) :537-563
[8]   Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals [J].
Beaudoin, AJ ;
Acharya, A ;
Chen, SR ;
Korzekwa, DA ;
Stout, MG .
ACTA MATERIALIA, 2000, 48 (13) :3409-3423
[9]  
BEAUDOIN AJ, 1996, NUMISHEET 96, P17
[10]   Evolution of grain-scale microstructure during large strain simple compression of polycrystalline aluminum with quasi-columnar grains: OIM measurements and numerical simulations [J].
Bhattacharyya, A ;
El-Danaf, E ;
Kalidindi, SR ;
Doherty, RD .
INTERNATIONAL JOURNAL OF PLASTICITY, 2001, 17 (06) :861-883