Application of pseudo-Hermitian quantum mechanics to a complex scattering potential with point interactions

被引:19
作者
Mehri-Dehnavi, Hossein [1 ,2 ]
Mostafazadeh, Ali [3 ]
Batal, Ahmet [3 ]
机构
[1] Kinki Univ, Interdisciplinary Sch Sci & Engn, Res Ctr Quantum Comp, Osaka 5778502, Japan
[2] Inst Adv Studies Basic Sci, Dept Phys, Zanjan 451951159, Iran
[3] Koc Univ, Dept Math, TR-34450 Istanbul, Turkey
关键词
PT-SYMMETRY; PERIODIC POTENTIALS; SPECTRUM; HAMILTONIANS; DEGENERACIES; EVOLUTION; OPERATOR; SYSTEMS; REALITY;
D O I
10.1088/1751-8113/43/14/145301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalization of the perturbative construction of the metric operator for non-Hermitian Hamiltonians with more than one perturbation parameter. We use this method to study the non-Hermitian scattering Hamiltonian H = p(2)/2m + zeta(-)delta(x + alpha) + zeta(+)delta(x - alpha), where zeta(+/-) and alpha are respectively complex and real parameters and delta(x) is the Dirac delta function. For regions in the space of coupling constants zeta(+/-) where H is quasi-Hermitian and there are no complex bound states or spectral singularities, we construct a (positive-definite) metric operator eta and the corresponding equivalent Hermitian Hamiltonian h. eta turns out to be a (perturbatively) bounded operator for the cases where the imaginary part of the coupling constants have the opposite sign, (sic)(zeta(+)) = -(sic)(zeta(-)). This in particular contains the PT-symmetric case: zeta(+) = zeta*. We also calculate the energy expectation values for certain Gaussian wave packets to study the nonlocal nature of h or equivalently the non-Hermitian nature of H. We show that these physical quantities are not directly sensitive to the presence of the PT - symmetry.
引用
收藏
页数:19
相关论文
共 46 条
[11]   The band spectrum of periodic potentials with PT-symmetry [J].
Cerveró, JM ;
Rodríguez, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43) :10167-10177
[12]   One-dimensional point interaction with three complex parameters [J].
Coutinho, F. A. B. ;
Nogami, Y. ;
Toyama, F. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)
[13]   Time evolution of non-Hermitian Hamiltonian systems [J].
de Morisson Faria, C. Figueira ;
Fring, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (29) :9269-9289
[14]   Encircling an exceptional point -: art. no. 056216 [J].
Dembowski, C ;
Dietz, B ;
Gräf, HD ;
Harney, HL ;
Heine, A ;
Heiss, WD ;
Richter, A .
PHYSICAL REVIEW E, 2004, 69 (05) :7
[15]   Experimental observation of the topological structure of exceptional points [J].
Dembowski, C ;
Gräf, HD ;
Harney, HL ;
Heine, A ;
Heiss, WD ;
Rehfeld, H ;
Richter, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :787-790
[16]   On the concept of spectral singularities [J].
Guseinov, Gusein Sh .
PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (03) :587-603
[17]   PHASE-TRANSITIONS OF FINITE FERMI SYSTEMS AND QUANTUM CHAOS [J].
HEISS, WD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 242 (4-6) :443-451
[18]   Scattering from localized non-Hermitian potentials [J].
Jones, H. F. .
PHYSICAL REVIEW D, 2007, 76 (12)
[19]   Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation [J].
Jones, H. F. .
PHYSICAL REVIEW D, 2008, 78 (06)
[20]   The energy spectrum of complex periodic potentials of the Kronig-Penney type [J].
Jones, HF .
PHYSICS LETTERS A, 1999, 262 (2-3) :242-244