Application of pseudo-Hermitian quantum mechanics to a complex scattering potential with point interactions

被引:19
作者
Mehri-Dehnavi, Hossein [1 ,2 ]
Mostafazadeh, Ali [3 ]
Batal, Ahmet [3 ]
机构
[1] Kinki Univ, Interdisciplinary Sch Sci & Engn, Res Ctr Quantum Comp, Osaka 5778502, Japan
[2] Inst Adv Studies Basic Sci, Dept Phys, Zanjan 451951159, Iran
[3] Koc Univ, Dept Math, TR-34450 Istanbul, Turkey
关键词
PT-SYMMETRY; PERIODIC POTENTIALS; SPECTRUM; HAMILTONIANS; DEGENERACIES; EVOLUTION; OPERATOR; SYSTEMS; REALITY;
D O I
10.1088/1751-8113/43/14/145301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalization of the perturbative construction of the metric operator for non-Hermitian Hamiltonians with more than one perturbation parameter. We use this method to study the non-Hermitian scattering Hamiltonian H = p(2)/2m + zeta(-)delta(x + alpha) + zeta(+)delta(x - alpha), where zeta(+/-) and alpha are respectively complex and real parameters and delta(x) is the Dirac delta function. For regions in the space of coupling constants zeta(+/-) where H is quasi-Hermitian and there are no complex bound states or spectral singularities, we construct a (positive-definite) metric operator eta and the corresponding equivalent Hermitian Hamiltonian h. eta turns out to be a (perturbatively) bounded operator for the cases where the imaginary part of the coupling constants have the opposite sign, (sic)(zeta(+)) = -(sic)(zeta(-)). This in particular contains the PT-symmetric case: zeta(+) = zeta*. We also calculate the energy expectation values for certain Gaussian wave packets to study the nonlocal nature of h or equivalently the non-Hermitian nature of H. We show that these physical quantities are not directly sensitive to the presence of the PT - symmetry.
引用
收藏
页数:19
相关论文
共 46 条
[1]   Energy band structure due to a complex, periodic, PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 286 (04) :231-235
[2]  
Albeverio S, 2002, LETT MATH PHYS, V59, P227, DOI 10.1023/A:1015559117837
[3]   J-self-adjoint operators with C-symmetries: an extension theory approach [J].
Albeverio, S. ;
Guenther, U. ;
Kuzhel, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (10)
[4]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[5]   Semiclassical calculation of the C operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Jones, HF .
PHYSICS LETTERS A, 2004, 328 (2-3) :102-109
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[8]   Physics of nonhermitian degeneracies [J].
Berry, MV .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) :1039-1047
[9]   Mode degeneracies and the Petermann excess-noise factor for unstable lasers [J].
Berry, MV .
JOURNAL OF MODERN OPTICS, 2003, 50 (01) :63-81
[10]   Exceptional points in atomic spectra [J].
Cartarius, Holger ;
Main, Jorg ;
Wunner, Gunter .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)