Machine learning-based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration

被引:25
作者
Koga, Shunsuke [1 ]
Zhou, Xiaolai [1 ,2 ]
Dickson, Dennis W. [1 ]
机构
[1] Mayo Clin, Dept Neurosci, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
[2] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou, Guangdong, Peoples R China
关键词
corticobasal degeneration; corticobasal syndrome; decision tree classifier; hierarchical cluster analysis; Machine learning; progressive supranuclear palsy; NINDS NEUROPATHOLOGIC CRITERIA; ALZHEIMERS-DISEASE; BRAIN;
D O I
10.1111/nan.12710
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Aims This study aimed to clarify the different topographical distribution of tau pathology between progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) and establish a machine learning-based decision tree classifier. Methods Paraffin-embedded sections of the temporal cortex, motor cortex, caudate nucleus, globus pallidus, subthalamic nucleus, substantia nigra, red nucleus, and midbrain tectum from 1020 PSP and 199 CBD cases were assessed by phospho-tau immunohistochemistry. The severity of tau lesions (i.e., neurofibrillary tangle, coiled body, tufted astrocyte or astrocytic plaque, and tau threads) was semi-quantitatively scored in each region. Hierarchical cluster analysis was performed using tau pathology scores. A decision tree classifier was made with tau pathology scores using 914 cases. Cross-validation was done using 305 cases. An additional ten cases were used for a validation study. Results Cluster analysis displayed two distinct clusters; the first cluster included only CBD, and the other cluster included all PSP and six CBD cases. We built a decision tree, which used only seven decision nodes. The scores of tau threads in the caudate nucleus were the most decisive factor for predicting CBD. In a cross-validation, 302 out of 305 cases were correctly diagnosed. In the pilot validation study, three investigators made a correct diagnosis in all cases using the decision tree. Conclusion Regardless of the morphology of astrocytic tau lesions, semi-quantitative tau pathology scores in select brain regions are sufficient to distinguish PSP and CBD. The decision tree simplifies neuropathologic differential diagnosis of PSP and CBD.
引用
收藏
页码:931 / 941
页数:11
相关论文
共 38 条
[1]   Globular glial tauopathies (GGT): consensus recommendations [J].
Ahmed, Zeshan ;
Bigio, Eileen H. ;
Budka, Herbert ;
Dickson, Dennis W. ;
Ferrer, Isidro ;
Ghetti, Bernardino ;
Giaccone, Giorgio ;
Hatanpaa, Kimmo J. ;
Holton, Janice L. ;
Josephs, Keith A. ;
Powers, James ;
Spina, Salvatore ;
Takahashi, Hitoshi ;
White, Charles L., III ;
Revesz, Tamas ;
Kovacs, Gabor G. .
ACTA NEUROPATHOLOGICA, 2013, 126 (04) :537-544
[2]   Criteria for the diagnosis of corticobasal degeneration [J].
Armstrong, Melissa J. ;
Litvan, Irene ;
Lang, Anthony E. ;
Bak, Thomas H. ;
Bhatia, Kailash P. ;
Borroni, Barbara ;
Boxer, Adam L. ;
Dickson, Dennis W. ;
Grossman, Murray ;
Hallett, Mark ;
Josephs, Keith A. ;
Kertesz, Andrew ;
Lee, Suzee E. ;
Miller, Bruce L. ;
Reich, Stephen G. ;
Riley, David E. ;
Tolosa, Eduardo ;
Troester, Alexander I. ;
Vidailhet, Marie ;
Weiner, William J. .
NEUROLOGY, 2013, 80 (05) :496-503
[3]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[4]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[5]   Office of rare diseases neuropathologic criteria for corticobasal degeneration [J].
Dickson, DW ;
Bergeron, C ;
Chin, SS ;
Duyckaerts, C ;
Horoupian, D ;
Ikeda, K ;
Jellinger, K ;
Lantos, PL ;
Lippa, CF ;
Mirra, SS ;
Tabaton, M ;
Vonsattel, JP ;
Wakabayashi, K ;
Litvan, I .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2002, 61 (11) :935-946
[6]  
Dickson DW, 1999, J NEUROL, V246, P6
[7]   A guide to deep learning in healthcare [J].
Esteva, Andre ;
Robicquet, Alexandre ;
Ramsundar, Bharath ;
Kuleshov, Volodymyr ;
DePristo, Mark ;
Chou, Katherine ;
Cui, Claire ;
Corrado, Greg ;
Thrun, Sebastian ;
Dean, Jeff .
NATURE MEDICINE, 2019, 25 (01) :24-29
[8]   Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies [J].
Forrest, Shelley L. ;
Kril, Jillian J. ;
Stevens, Claire H. ;
Kwok, John B. ;
Hallupp, Marianne ;
Kim, Woojin S. ;
Huang, Yue ;
McGinley, Ciara V. ;
Werka, Hellen ;
Kiernan, Matthew C. ;
Gotz, Jurgen ;
Spillantini, Maria Grazia ;
Hodges, John R. ;
Ittner, Lars M. ;
Halliday, Glenda M. .
BRAIN, 2018, 141 :521-534
[9]   Sensitivity-Specificity of Tau and Amyloid β Positron Emission Tomography in Frontotemporal Lobar Degeneration [J].
Ghirelli, Alma ;
Tosakulwong, Nirubol ;
Weigand, Stephen D. ;
Clark, Heather M. ;
Ali, Farwa ;
Botha, Hugo ;
Duffy, Joseph R. ;
Utianski, Rene L. ;
Buciuc, Marina ;
Murray, Melissa E. ;
Labuzan, Sydney A. ;
Spychalla, Anthony J. ;
Pham, Nha Trang Thu ;
Schwarz, Christopher G. ;
Senjem, Matthew L. ;
Machulda, Mary M. ;
Baker, Matthew ;
Rademakers, Rosa ;
Filippi, Massimo ;
Jack, Clifford R., Jr. ;
Lowe, Val J. ;
Parisi, Joseph E. ;
Dickson, Dennis W. ;
Josephs, Keith A. ;
Whitwell, Jennifer L. .
ANNALS OF NEUROLOGY, 2020, 88 (05) :1009-1022
[10]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410