EBSD-AFM hybrid analysis of crack initiation in stainless steel under fatigue loading

被引:6
|
作者
Wang, Yun [1 ]
Kimura, Hidehiko
Akiniwa, Yoshiaki [1 ,2 ]
Tanaka, Keisuke [1 ,2 ]
机构
[1] Nagoya Univ, Dept Mech Sci & Engn, Nagoya, Aichi, Japan
[2] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648601, Japan
来源
ENGINEERING PLASTICITY AND ITS APPLICATIONS FROM NANOSCALE TO MACROSCALE, PTS 1 AND 2 | 2007年 / 340-341卷
关键词
fatigue crack initiation; slip band cracks; electron back-scattered diffraction; atomic force microscopy; stainless steel; surface topography; Schmid factor; Taylor factor;
D O I
10.4028/www.scientific.net/KEM.340-341.531
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Both EBSD and AFM methods were used to investigate the active slip systems and fatigue crack initiation behavior in face-centered cubic polycrystalline metal, austenitic stainless steel, SUS316NG, under cyclic torsional loading. Most active slip planes are the primary slip planes having the largest Schmid factor. Grains with slip band cracks or transcrystalline cracks have larger Taylor's factors. On the basis of EBSD and AFM observations, h, the depth of intrusion vertical to the surface, S, and the component of the slip displacement perpendicular to the surface trace, S-B, showed a sharp increase at the onset of crack initiation. The critical value of S-B at crack initiation was 170 nm.
引用
收藏
页码:531 / +
页数:2
相关论文
共 50 条
  • [1] EBSD-AFM hybrid analysis of fatigue slip system and crack initiation in polycrystalline metal under cyclic torsional loading
    Wang, Y
    Kimura, H
    Akiniwa, Y
    Tanaka, K
    Proceedings of the 2005 International Symposium on Micro-NanoMechatronics and Human Science: FROM MICRO & NANO SCALE SYSTEMS TO ROBOTICS & MECHATRONICS SYSTEMS, 2005, : 223 - 228
  • [2] CRACK INITIATION AND GROWTH UNDER CREEP AND FATIGUE LOADING OF AN AUSTENITIC STAINLESS-STEEL
    PIQUES, R
    BENSUSSAN, P
    PINEAU, A
    NUCLEAR ENGINEERING AND DESIGN, 1989, 116 (03) : 293 - 306
  • [3] Environmental Effect on Fatigue Crack Initiation under Equi-Biaxial Loading of an Austenitic Stainless Steel
    Gourdin, Cedric
    Perez, Gregory
    Dhahri, Hager
    De Baglion, Laurent
    Le Roux, Jean-Christophe
    METALS, 2021, 11 (02) : 1 - 15
  • [4] Crack initiation and propagation under thermal fatigue of austenitic stainless steel
    Wang, Yanjun
    Charbal, Ali
    Hild, Francois
    Roux, Stephan
    Vincent, Ludovic
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 124 : 149 - 166
  • [5] CDM analysis of fatigue crack initiation under random loading
    Bhattacharya, B
    Ellingwood, BR
    STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 273 - 279
  • [6] Branched crack initiation and propagation under inclined loading for an austenitic stainless steel
    Shi, HJ
    Niu, LS
    FATIGUE '99: PROCEEDINGS OF THE SEVENTH INTERNATIONAL FATIGUE CONGRESS, VOLS 1-4, 1999, : 947 - 952
  • [7] Study of Fatigue Crack Initiation in 316 Stainless Steel
    Benabdeljalil, O.
    Khan, M. K.
    Fitzpatrick, M. E.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2025, 48 (04) : 1893 - 1904
  • [8] VACUUM CRACK GROWTH BEHAVIOR OF AUSTENITIC STAINLESS STEEL UNDER FATIGUE LOADING
    Takeda, T.
    Shindo, Y.
    Narita, F.
    STRENGTH OF MATERIALS, 2011, 43 (05) : 532 - 536
  • [9] Vacuum crack growth behavior of austenitic stainless steel under fatigue loading
    T. Takeda
    Y. Shindo
    F. Narita
    Strength of Materials, 2011, 43 : 532 - 536
  • [10] Crack growth in stainless steel 304 under creep-fatigue loading
    Baik, Y. M.
    Kim, K. S.
    PROGRESSES IN FRACTURE AND STRENGTH OF MATERIALS AND STRUCTURES, 1-4, 2007, 353-358 : 485 - +