The distribution of values in the quadratic assignment problem

被引:11
作者
Barvinok, A
Stephen, T
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Minnesota, Inst Math & Its Applicat IMA, Minneapolis, MN 55455 USA
关键词
Quadratic Assignment Problem; distribution; symmetric group; randomized algorithms; heuristics; representation theory;
D O I
10.1287/moor.28.1.64.14262
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We obtain a number of results regarding the distribution of values of a quadratic function f on the set of n x n permutation matrices (identified with the symmetric group S) around its optimum,. (minimum or maximum). We estimate the fraction of permutations sigma such that f (sigma) lies within a given neighborhood of the optimal value of f and relate the optimal value with the average value of f over a neighborhood of the optimal permutation. We describe a natural class of functions (which includes, for example, the objective function in the Traveling Salesman Problem) with a relative abundance of near-optimal permutations. Also, we identify a large class of functions f with the property that permutations close to the optimal permutation in the Hamming metric of S-n tend to produce near optimal values of f (such is, for example, the objective function in the symmetric Traveling Salesman Problem). We show that for general f, just the opposite behavior may take place: an average permutation in the vicinity of the optimal permutation may be much worse than an average permutation in the whole group S-n.
引用
收藏
页码:64 / 91
页数:28
相关论文
共 13 条
[1]  
[Anonymous], 1983, COMBINATORIAL ENUMER
[2]   Solving large quadratic assignment problems on computational grids [J].
Anstreicher, K ;
Brixius, N ;
Goux, JP ;
Linderoth, J .
MATHEMATICAL PROGRAMMING, 2002, 91 (03) :563-588
[3]  
Arkin EM, 2001, INFORM PROCESS LETT, V77, P13, DOI 10.1016/S0020-0190(00)00151-4
[4]  
Ausiello G, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[5]   Estimating L∞ norms by L2k norms for functions on orbits [J].
Barvinok, A .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (04) :393-412
[6]   Solving large-scale QAP problems in parallel with the search library ZRAM [J].
Brungger, A ;
Marzetta, A ;
Clausen, J ;
Perregaard, M .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1998, 50 (1-2) :157-169
[7]  
Burkard R. E., 1999, Handbook of Combinatorial Optimization, P75
[8]  
Fulton W., 2004, REPRESENT THEOR, V129
[9]  
GRAVES GW, 1970, MANAGE SCI, V17, P453
[10]   THE QUADRATIC ASSIGNMENT PROBLEM [J].
LAWLER, EL .
MANAGEMENT SCIENCE, 1963, 9 (04) :586-599