Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model

被引:25
作者
Koniakhin, Sergei V. [1 ,2 ,3 ]
Utesov, Oleg I. [2 ,4 ]
Terterov, Ivan N. [2 ,5 ]
Siklitskaya, Alexandra V. [6 ]
Yashenkin, Andrey G. [4 ,7 ]
Solnyshkov, Dmitry [1 ]
机构
[1] Univ Clermont Auvergne, CNRS, Inst Pascal, PHOTON N2, 4 Ave Blaise Pascal, F-63178 Aubiere, France
[2] Russian Acad Sci, Nanotechnol Res & Educ Ctr, St Petersburg Acad Univ, 8-3 Khlopina St, St Petersburg 194021, Russia
[3] Russian Acad Sci, Ioffe Phys Tech Inst, 26 Politekhnicheskaya, St Petersburg 194021, Russia
[4] Kurchatov Inst, NRC, Petersburg Nucl Phys Inst, Gatchina 188300, Russia
[5] St Petersburg Clin Sci & Pract Ctr Specialized Ty, St Petersburg 197758, Russia
[6] Polish Acad Sci, Inst Phys Chem, 44-52 Kasprzaka, PL-01224 Warsaw, Poland
[7] St Petersburg State Univ, Dept Phys, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
BOND POLARIZABILITY MODEL; TEMPERATURE-DEPENDENCE; LIGHT-SCATTERING; OPTICAL PHONON; DIAMOND; SPECTROSCOPY; NANODIAMOND; SILICON; SIZE; DISPERSION;
D O I
10.1021/acs.jpcc.8b05415
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In crystalline nanoparticles, the Raman peak is downshifted with respect to the bulk material and has asymmetric broadening. These effects are straightly related to the finite size of nanoparticles, giving the perspective to use Raman spectroscopy as the size probe. By combining the dynamical matrix method (DMM) and the bond polarization model (BPM), we develop a new (DMM-BPM) approach for the description of Raman spectra of nanoparticle powders. The numerical variant of this approach is suitable for the description of small particles, whereas its analytical version is simpler to implement and allows one to obtain the Raman spectra of arbitrary-sized particles. Focusing on nanodiamond powders, the DMM BPM theory is shown to fit the most recent experimental data much better than the commonly used phonon confinement model.
引用
收藏
页码:19219 / 19229
页数:11
相关论文
共 76 条
[1]   SPATIALLY RESOLVED RAMAN STUDIES OF DIAMOND FILMS GROWN BY CHEMICAL VAPOR-DEPOSITION [J].
AGER, JW ;
VEIRS, DK ;
ROSENBLATT, GM .
PHYSICAL REVIEW B, 1991, 43 (08) :6491-6499
[2]   Diamond-graphite phase transition in ultradisperse-diamond clusters [J].
Aleksenskii, AE ;
Baidakova, MV ;
Vul, AY ;
Davydov, VY ;
Pevtsova, YA .
PHYSICS OF THE SOLID STATE, 1997, 39 (06) :1007-1015
[3]   Theory of Raman scattering by phonons in germanium nanostructures [J].
Alfaro-Calderon, Pedro ;
Cruz-Irisson, Miguel ;
Wang-Chen, Chumin .
NANOSCALE RESEARCH LETTERS, 2008, 3 (02) :55-59
[4]   PIEZO-RAMAN MEASUREMENTS AND ANHARMONIC PARAMETERS IN SILICON AND DIAMOND [J].
ANASTASSAKIS, E ;
CANTARERO, A ;
CARDONA, M .
PHYSICAL REVIEW B, 1990, 41 (11) :7529-7535
[5]  
[Anonymous], 1988, International series of monographs on physics
[6]  
[Anonymous], 2010, MATH VERS 11 0
[7]   Raman spectroscopy of optical phonon confinement in nanostructured materials [J].
Arora, Akhilesh K. ;
Rajalakshmi, M. ;
Ravindran, T. R. ;
Sivasubramanian, V. .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (06) :604-617
[8]   Correlation of TEM data with confined phonons to determine strain and size of Ge nanocrystals embedded in SixNy matrix [J].
Bahariqushchi, Rahim ;
Gundogdu, Sinan ;
Aydinli, Atilla .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 111 :90-95
[9]   Determination of phonon dispersion curves by means of inelastic x-ray scattering [J].
Burkel, E .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (34) :7627-7644
[10]   THE EFFECTS OF MICROCRYSTAL SIZE AND SHAPE ON THE ONE PHONON RAMAN-SPECTRA OF CRYSTALLINE SEMICONDUCTORS [J].
CAMPBELL, IH ;
FAUCHET, PM .
SOLID STATE COMMUNICATIONS, 1986, 58 (10) :739-741