Jackson theorem in Lp, 0 < p < 1, for functions on the sphere

被引:4
作者
Dai, F. [1 ]
Ditzian, Z. [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
Spherical harmonic polynomials; Modulus of smoothness; APPROXIMATION; INEQUALITY; SPACES;
D O I
10.1016/j.jat.2009.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The best approximation of functions in L-p(Sd-1), 0 < p < 1 by spherical harmonic polynomials is shown to be bounded by a modulus of smoothness recently introduced by the second author. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:382 / 391
页数:10
相关论文
共 9 条
[1]   Approximation of smooth functions on compact two-point homogeneous spaces [J].
Brown, G ;
Dai, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) :401-423
[2]   Jackson inequality for banach spaces on the sphere [J].
Dai, F. ;
Ditzian, Z. .
ACTA MATHEMATICA HUNGARICA, 2008, 118 (1-2) :171-195
[3]   Multivariate polynomial inequalities with respect to doubling weights and A∞ weights [J].
Dai, Feng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (01) :137-170
[4]   Jackson-Type inequality on the sphere [J].
Ditzian, Z .
ACTA MATHEMATICA HUNGARICA, 2004, 102 (1-2) :1-35
[5]   A modulus of smoothness on the unit sphere [J].
Ditzian, Z .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1) :189-200
[6]  
König H, 1999, MATH RES, V107, P201
[8]  
RUNOVSKII KV, 1994, RUSSIAN ACAD SCI SB, V78, P163
[9]  
Stein E. M., 1971, Fourier analysis on Euclidean spaces, V32