JOINT MULTI-TASK LEARNING FOR SURVIVAL PREDICTION OF GASTRIC CANCER PATIENTS USING CT IMAGES

被引:9
作者
Zhang, Liwen [1 ,2 ]
Dong, Di [1 ,2 ]
Liu, Zaiyi [3 ]
Zhou, Junlin [4 ]
Tian, Jie [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing, Peoples R China
[3] Guangdong Gen Hosp, Dept Radiol, Guangzhou, Peoples R China
[4] Lanzhou Univ, Hosp 2, Dept Radiol, Lanzhou, Peoples R China
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Overall survival; gastric cancer; multi-task; multi-level; deep learning;
D O I
10.1109/ISBI48211.2021.9433820
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate pre-operative overall survival (OS) prediction of gastric patients is of great significance for personalized treatment. To facilitate improvement of survival prediction, we propose a novel joint multi-task network equipped with multi-level features simultaneously predicting clinical tumor and node stages. Two independent datasets including a training set (377 patients) and a test set (122 patients) are used to evaluate our proposed network. The results indicated that the multi-task network exploits its recipe by capturing multi-level features, and sharing prognostic information from correlated tasks of clinical stages prediction, which enable our network to predict OS accurately. Our method outperforms the existing methods with the highest c-index (training: 0.73; test: 0.72). Meanwhile, our method shows better prognostic value with the highest hazard ratio (training: 3.77; test: 4.28) for dividing patients into high- and low-risk groups.
引用
收藏
页码:895 / 898
页数:4
相关论文
共 9 条
[1]   Gastric Cancer, Version 3.2016 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Almhanna, Khaldoun ;
Bentrem, David J. ;
Chao, Joseph ;
Das, Prajnan ;
Denlinger, Crystal S. ;
Fanta, Paul ;
Farjah, Farhood ;
Fuchs, Charles S. ;
Gerdes, Hans ;
Gibson, Michael ;
Glasgow, Robert E. ;
Hayman, James A. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Jaroszewski, Dawn ;
Johung, Kimberly L. ;
Keswani, Rajesh N. ;
Kleinberg, Lawrence R. ;
Korn, W. Michael ;
Leong, Stephen ;
Linn, Catherine ;
Lockhart, A. Craig ;
Ly, Quan P. ;
Mulcahy, Mary F. ;
Orringer, Mark B. ;
Perry, Kyle A. ;
Poultsides, George A. ;
Scott, Walter J. ;
Strong, Vivian E. ;
Washington, Mary Kay ;
Weksler, Benny ;
Willett, Christopher G. ;
Wright, Cameron D. ;
Zelman, Debra ;
McMillian, Nicole ;
Sundar, Hema .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2016, 14 (10) :1286-1312
[2]   Instance-aware Semantic Segmentation via Multi-task Network Cascades [J].
Dai, Jifeng ;
He, Kaiming ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3150-3158
[3]   Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J].
Dong, D. ;
Tang, L. ;
Li, Z. -Y ;
Fang, M-J ;
Gao, J-B ;
Shan, X-H ;
Ying, X-J ;
Sun, Y-S ;
Fu, J. ;
Wang, X-X ;
Li, L-M ;
Li, Z-H ;
Zhang, D-F ;
Zhang, Y. ;
Li, Z-M ;
Shan, F. ;
Bu, Z-D ;
Tian, J. ;
Ji, J-F .
ANNALS OF ONCOLOGY, 2019, 30 (03) :431-438
[4]  
Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.21492, 10.3322/caac.20115, 10.3322/caac.20107]
[5]   Development and Validation of a Deep Learning CT Signature to Predict Survival and Chemotherapy Benefit in Gastric Cancer [J].
Jiang, Yuming ;
Jin, Cheng ;
Yu, Heng ;
Wu, Jia ;
Chen, Chuanli ;
Yuan, Qingyu ;
Huang, Weicai ;
Hu, Yanfeng ;
Xu, Yikai ;
Zhou, Zhiwei ;
Fisher, George A., Jr. ;
Li, Guoxin ;
Li, Ruijiang .
ANNALS OF SURGERY, 2021, 274 (06) :E1153-E1161
[6]   Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection [J].
Li, Wuchao ;
Zhang, Liwen ;
Tian, Chong ;
Song, Hui ;
Fang, Mengjie ;
Hu, Chaoen ;
Zang, Yali ;
Cao, Ying ;
Dai, Shiyuan ;
Wang, Fang ;
Dong, Di ;
Wang, Rongpin ;
Tian, Jie .
EUROPEAN RADIOLOGY, 2019, 29 (06) :3079-3089
[7]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[8]   Improving the outcomes in gastric cancer surgery [J].
Tegels, Juul J. W. ;
De Maat, Michiel F. G. ;
Hulsewe, Karel W. E. ;
Hoofwijk, Anton G. M. ;
Stoot, Jan H. M. B. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (38) :13692-13704
[9]   A deep learning risk prediction model for overall survival in patients with gastric cancer: A multicenter study [J].
Zhang, Liwen ;
Dong, Di ;
Zhang, Wenjuan ;
Hao, Xiaohan ;
Fang, Mengjie ;
Wang, Shuo ;
Li, Wuchao ;
Liu, Zaiyi ;
Wang, Rongpin ;
Zhou, Junlin ;
Tian, Jie .
RADIOTHERAPY AND ONCOLOGY, 2020, 150 :73-80