Some research on Levenberg-Marquardt method for the nonlinear equations

被引:77
作者
Ma, Changfeng [1 ]
Jiang, Lihua
机构
[1] Fujian Normal Univ, Dept Math, Coll Math & Comp Sci, Fuzhou 35007, Peoples R China
[2] Anhui Univ Sci & Technol, Dept Math & Phys, Anhui 232001, Peoples R China
[3] Guilin Univ Elect Technol, Dept Computat & Math, Guangxi 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear equations; local error bound; Levenberg-Marquardt method;
D O I
10.1016/j.amc.2006.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Levenberg-Marquardt method is one of the most important methods for solving systems of nonlinear equations. In this paper, we consider the convergence of a new Levenberg-Marquardt method (i.e. lambda(k) = theta vertical bar vertical bar F-k vertical bar vertical bar + (1 - theta)vertical bar vertical bar J(k)(T)F(k)vertical bar vertical bar, where theta is an element of [0, 1] is a real parameter) for solving a system of singular nonlinear equations F(x) = 0, where F is a mapping from R-n into R-m. We will show that if vertical bar vertical bar F(x)vertical bar vertical bar provides a local error bound which is weaker than the condition of nonsingular for the system of nonsingular for the system of nonlinear equations, the sequence generated by the new Levenberg-Marquardt method convergence to a point of the solution set X* quadratically. Numerical experiments and comparisons are reported. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1032 / 1040
页数:9
相关论文
共 8 条
[1]   An affine scaling trust-region approach to bound-constrained nonlinear systems [J].
Bellavia, S ;
Macconi, M ;
Morini, B .
APPLIED NUMERICAL MATHEMATICS, 2003, 44 (03) :257-280
[2]   Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions [J].
Dan, H ;
Yamashita, N ;
Fukushima, M .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (04) :605-626
[3]  
FAN JY, 2001, CONVERGENCE NEW LEVE
[4]  
GABRIEL SA, 1994, LARGE SCALE OPTIMIZATION: STATE OF THE ART, P155
[5]  
Kanzow C, 2001, APPL OPTIM, V50, P179
[6]  
MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17, DOI 10.1145/355934.355936
[7]  
Powell MJD, 1962, COMPUT J, V5, P147
[8]   Ninth Symposium of the Japanese Arsenic Scientists' Society (JASS-9), 20-21 November 1999, Hiroshima, Japan - Preface [J].
Yamaoka, Y .
APPLIED ORGANOMETALLIC CHEMISTRY, 2001, 15 (04) :239-239