Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas

被引:29
作者
Jaervinen, A. E. u [1 ]
Brezinsek, S. [2 ,35 ]
Giroud, C. [3 ,9 ]
Groth, M. [1 ,7 ]
Guillemaut, C. [4 ,10 ]
Belo, P. [3 ,9 ,46 ]
Brix, M. [3 ,9 ]
Corrigan, G. [3 ,9 ]
Drewelow, P. [5 ,56 ]
Harting, D. [3 ,9 ,35 ]
Huber, A. [2 ,33 ]
Lawson, K. D. [3 ,9 ]
Lipschultz, B. [6 ,57 ,98 ]
Maggi, C. F. [3 ,55 ]
Matthews, G. F. [3 ,9 ]
Meigs, A. G. [3 ,9 ]
Moulton, D. [3 ,7 ]
Stamp, M. F. [3 ,9 ]
Wiesen, S. [2 ,35 ]
Abhangi, M. [40 ]
Abreu, P. [46 ]
Aftanas, M. [43 ]
Afzal, M. [9 ]
Aggarwal, K. M. [26 ]
Aho-Mantila, L. [100 ]
Ahonen, E. [7 ]
Aints, M. [96 ]
Airila, M. [100 ]
Albanese, R. [94 ]
Alegre, D. [52 ]
Alessi, E. [39 ]
Aleynikov, P. [48 ]
Alfier, A. [13 ]
Alkseev, A. [61 ]
Allan, P. [9 ]
Almaviva, S. [85 ]
Alonso, A. [52 ]
Alper, B. [9 ]
Alsworth, I. [9 ]
Alves, D. [46 ]
Ambrosino, G. [94 ]
Ambrosino, R. [95 ]
Amosov, V. [78 ]
Andersson, F. [17 ]
Andersson Sunden, E. [21 ]
Angelone, M. [80 ]
Anghel, A. [75 ]
Anghel, M. [74 ]
Angioni, C. [55 ]
Appel, L. [9 ]
机构
[1] Aalto Univ, Sch Sci, Dept Appl Phys, POB 11100, FI-00076 Aalto, Finland
[2] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[3] Culham Sci Ctr, CCFE, Abingdon OX13 3DB, Oxon, England
[4] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal
[5] Max Planck Inst Plasma Phys, Greifswald, Germany
[6] Univ York, York Plasma Inst, York YO10 5DD, N Yorkshire, England
[7] Aalto Univ, FIN-00076 Aalto, Finland
[8] BCS, Barcelona, Spain
[9] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[10] IRFM, CEA, F-13108 St Paul Les Durance, France
[11] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[12] Consorzio CREATE, I-80125 Naples, Italy
[13] Consorzio RFX, I-35127 Padua, Italy
[14] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[15] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[16] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[17] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[18] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[19] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[20] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[21] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[22] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[23] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[24] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[25] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[26] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[27] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[28] Dublin City Univ, Dublin, Ireland
[29] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[30] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[31] EUROfus Programme Management Unit, D-85748 Garching, Germany
[32] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[33] European Commiss, B-1049 Brussels, Belgium
[34] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[35] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[36] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[37] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[38] Gen Atom, San Diego, CA 85608 USA
[39] IFP CNR, I-20125 Milan, Italy
[40] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[41] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[42] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[43] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[44] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[45] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[46] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[47] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[48] ITER Org, F-13067 St Paul Les Durance, France
[49] Naka Fus Res Estab, Japan Atom Energy Agcy, Naka 3110913, Ibaraki, Japan
[50] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
基金
芬兰科学院;
关键词
JET; divertor; radiation; geometry; detachment; impurity seeding; EDGE2D-EIRENE; PHYSICS; DETACHMENT; TRANSPORT; PROGRESS;
D O I
10.1088/0741-3335/58/4/045011
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Radiative divertor operation in JET high confinement mode plasmas with the ITER-like wall has been experimentally investigated and simulated with EDGE2D-EIRENE in horizontal and vertical low field side (LFS) divertor configurations. The simulations show that the LFS divertor heat fluxes are reduced with N2-injection in similar fashion in both configurations, qualitatively consistent with experimental observations. The simulations show no substantial difference between the two configurations in the reduction of the peak LFS heat flux as a function of divertor radiation, nitrogen concentration, or pedestal Zeff. Consistently, experiments show similar divertor radiation and nitrogen injection levels for similar LFS peak heat flux reduction in both configurations. Nevertheless, the LFS strike point is predicted to detach at 20% lower separatrix density in the vertical than in the horizontal configuration. However, since the peak LFS heat flux in partial detachment in the vertical configurations is shifted towards the far scrape-off layer (SOL), the simulations predict no benefit in the reduction of LFS peak heat flux for a given upstream density in the vertical configuration relative to a horizontal one. A factor of 2 reduction of deuterium ionization source inside the separatrix is observed in the simulations when changing to the vertical configuration. The simulations capture the experimentally observed particle and heat flux reduction at the LFS divertor plate in both configurations, when adjusting the impurity injection rate to reproduce the measured divertor radiation. However, the divertor D-alpha-emissions are underestimated by a factor of 2-5, indicating a short-fall in radiation by the fuel species. In the vertical configuration, detachment is experimentally measured and predicted to start next to the strike point, extending towards the far SOL with increasing degree of detachment. In contrast, in the horizontal configuration, the entire divertor particle flux profile is reduced uniformly with increasing degree of detachment.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Density limit of H-mode plasmas on JET-ILW [J].
Huber, A. ;
Brezinsek, S. ;
Sergienko, G. ;
Groth, M. ;
de Vries, P. C. ;
Aho-Mantila, L. ;
Arnoux, G. ;
Bernert, M. ;
Beurskens, M. N. A. ;
Calabro, G. ;
Clever, M. ;
Esser, H. G. ;
Guillemaut, C. ;
Jachmich, S. ;
Jarvinen, A. ;
Linsmeier, Ch. ;
Matthews, G. F. ;
Meigs, A. G. ;
Mertens, Ph. ;
Philipps, V. ;
Stamp, M. ;
Wischmeier, M. ;
Wiesen, S. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :445-449
[32]   Evaluation of performance for the EAST upgraded divertor targets during type I ELMy H-mode [J].
Qian, X. Y. ;
Peng, X. B. ;
Wang, L. ;
Song, Y. T. ;
Ye, M. Y. ;
Zhang, J. W. ;
Li, W. X. ;
Zhu, C. C. .
NUCLEAR FUSION, 2016, 56 (02)
[33]   Impact of nitrogen molecular breakup on divertor conditions in JET L-mode plasmas using SOLPS-ITER [J].
Maenpaa, R. ;
Kumpulainen, H. ;
Groth, M. ;
Horsten, N. ;
Reiter, D. ;
Romazanov, J. ;
Lomanowski, B. ;
Brezinsek, S. ;
Karhunen, J. ;
Lawson, K. D. ;
Meigs, A. G. ;
Menmuir, S. ;
Shaw, A. .
NUCLEAR MATERIALS AND ENERGY, 2025, 43
[34]   Control of divertor geometry and performance of the ergodic divertor of Tore Supra [J].
Ghendrih, P ;
Bécoulet, M ;
Costanzo, L ;
Corre, Y ;
Grisolia, C ;
Grosman, A ;
Guirlet, R ;
Gunn, J ;
Loarer, T ;
Monier-Garbet, P ;
Mank, G ;
Reichle, R ;
Vallet, JC ;
Zabiégo, M ;
Azéroual, A ;
Bucalossi, J ;
Devynck, P ;
De Michelis, C ;
Finken, KH ;
Hogan, J ;
Laugier, F ;
Nguyen, F ;
Pégourié, B ;
Saint-Laurent, F ;
Schunke, B .
JOURNAL OF NUCLEAR MATERIALS, 2001, 290 :798-804
[35]   Kinetic modelling of parallel ion transport in the scrape-off layer and divertor of inter-edge localised mode JET high radiative H-mode plasma [J].
Chankin, A., V ;
Corrigan, G. ;
Jaervinen, A. E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (10)
[36]   Kinetic modelling of parallel ion transport in the scrape-off layer and divertor of inter-edge localised mode JET high radiative H-mode plasma [J].
Chankin, A., V ;
Corrigan, G. ;
Jaervinen, A. E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 1600, 15 (00) :0039-128X-1878-5867
[37]   Effect of delB drift on the H-mode power threshold in upper single null plasmas with ITER-like tungsten divertor on EAST [J].
Chen, L. ;
Xu, G. S. ;
Yan, N. ;
Nielsen, A. H. ;
Liu, J. B. ;
Gao, W. ;
Chen, R. ;
Qu, H. ;
Ding, F. ;
Mao, H. M. ;
Sun, Z. ;
Zhang, L. ;
Li, M. H. ;
Zhang, W. ;
Hu, G. H. ;
Shao, L. M. ;
Wu, X. Q. ;
Du, H. F. ;
Xu, J. C. ;
Li, Y. L. ;
Zhao, N. ;
Lan, H. ;
Ye, Y. ;
Zhang, H. ;
Wang, H. Q. ;
Ding, S. Y. ;
Wang, L. ;
Wan, B. N. .
PHYSICS OF PLASMAS, 2018, 25 (07)
[38]   Link between divertor conditions and high-field-side/low-field-side midplane density profiles in H-mode plasmas at ASDEX Upgrade [J].
Guimarais, L. ;
Silva, C. ;
Bernert, M. ;
Brida, D. ;
Cavedon, M. ;
Conway, G. D. ;
Drenik, A. ;
Gil, L. ;
Reichbauer, T. ;
Reimold, F. ;
Santos, J. ;
Seliunin, E. ;
Silva, A. ;
Stroth, U. ;
Vicente, J. ;
Wolfrum, E. .
NUCLEAR FUSION, 2019, 59 (12)
[39]   Comparison of H-mode plasmas in JET-ILW and JET-C with and without nitrogen seeding [J].
Jaervinen, A. E. ;
Giroud, C. ;
Groth, M. ;
Belo, P. ;
Brezinsek, S. ;
Beurskens, M. ;
Corrigan, G. ;
Devaux, S. ;
Drewelow, P. ;
Harting, D. ;
Huber, A. ;
Jachmich, S. ;
Lawson, K. ;
Lipschultz, B. ;
Maddison, G. ;
Maggi, C. ;
Marchetto, C. ;
Marsen, S. ;
Matthews, G. F. ;
Meigs, A. G. ;
Moulton, D. ;
Sieglin, B. ;
Stamp, M. F. ;
Wiesen, S. .
NUCLEAR FUSION, 2016, 56 (04)
[40]   Experimental studies and modeling of complete H-mode divertor detachment in ASDEX Upgrade [J].
Reimold, F. ;
Wischmeier, M. ;
Bernert, M. ;
Potzel, S. ;
Coster, D. ;
Bonnin, X. ;
Reiter, D. ;
Meisl, G. ;
Kallenbach, A. ;
Aho-Mantila, L. ;
Stroth, U. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :128-134